
Analyzing Enterprise Architecture
Models by Means of the Meta Attack

Language

Adina Aldea1 and Simon Hacks2(B)

1 University of Twente, Enschede, The Netherlands
a.i.aldea@utwente.nl

2 University of Southern Denmark, Odense, Denmark

shacks@mmmi.sdu.dk

Abstract. The digital transformation exposes organizations to new
threats endangering their business. A way to uncover these threats is
threat modeling and attack simulations. However, modeling an entire
organization by hand is time consuming and error prone. Therefore, we
propose to reuse Enterprise Architecture (EA) models. In this work, we
propose a mapping from ArchiMate, a common EA modeling language,
to coreLang, a threat modeling language, and use the resulting models
to perform attack simulations to foresee possible attack paths. Then, we
play back the results of the attack simulations to the EA model and
complete the round-trip. To demonstrate our approach, we developed a
prototype performing the transformation from ArchiMate to coreLang
and applied our approach to the well-known ArchiSurance example.

Keywords: ArchiMate · Attack simulations · Automated analysis ·
EA security

1 Introduction

Digital transformation has been a topic of interest for many organizations in the
past decade, as it changes customer relationships, internal processes and value cre-
ation [1]. On the one hand, it offers new possibilities for business model innovation
and the ability to disruptmarkets to gain lasting competitive advantage [2]. On the
other hand, it exposes organizations and customers to new threats. Common types
of cyber-attacks include email bombing, information and data theft, Distributed
Denial of Service (DDoS) attacks, Trojan viruses, and hacking the data or the sys-
tem that accesses it [3]. The COVID-19 pandemic has accelerated the process of
digital transformation as many organizations needed to support a remote work-
force and to provide their products and services online [4]. In 2020 58% of customer
interactions were digital compared to 36% in 2019 [5].

While some organizations benefit from the effects of the digital transforma-
tion [5], others struggle more than before [4]. Social engineering attacks are espe-
cially dangerous in this period of time due to more people working and studying
c© Springer Nature Switzerland AG 2022
X. Franch et al. (Eds.): CAiSE 2022, LNCS 13295, pp. 423–439, 2022.
https://doi.org/10.1007/978-3-031-07472-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07472-1_25&domain=pdf
http://orcid.org/0000-0001-7649-3890
http://orcid.org/0000-0003-0478-9347
https://doi.org/10.1007/978-3-031-07472-1_25


424 A. Aldea and S. Hacks

remote and using videoconferencing software. The US Federal Trade Commission
estimated that 12 million dollars were lost from COVID-19 related scams between
January and April 2020, with similar reports from other countries [6].

Thus, the importance of cyber security is becoming more apparent. While
research in the area of cyber security is progressing, there are not many studies
that focus on the security aspects of Enterprise Architecture (EA). EA can
be used by organizations to manage their digital transformation by designing,
planning, and implementing organizational change from the point of view of
their business, application, technology, and physical architecture [7]. One popular
language for EA modeling is the ArchiMate specification [7]. We have chosen to
use the ArchiMate language for our research due to its popularity [8], it is used
by many organizations. However, while the EA models created with ArchiMate
can help organizations with visualizing their IT landscape, they do not natively
support any kind of security analysis.

Current research addressing this gap has several limitations, such as a man-
ual security analysis [9], the information from the security analysis being used
without using the models as input [10], or the use of other languages than Archi-
Mate as a source for the security analysis [11]. In this research, we aim to address
these limitations and contribute to the state-of-the-art by proposing a way to
automate the transformation and analysis of ArchiMate models from a security
perspective. First, we propose a mapping between the concepts of the ArchiMate
language and coreLang. Second, we perform an analysis of the possible security
vulnerabilities with the help of the securiCAD attack simulations. Third, we
enrich the ArchiMate models with the results of the analysis in a way that illus-
trates the most likely attacks on the EA of an organization.

Based on these limitations and our previous research [12], we assume the case
of an organization that has a large EA model repository (often in the notation
of ArchiMate [7,8]) at hand and desires to perform a security analysis to reduce
the risk of unwanted compromise of the organization. Usually, one would scan
the systems and perform an automated vulnerability analysis. However, this
is just partly possible, as EA models usually lack detailed information that is
necessary to identify concrete vulnerabilities (such as concrete versions). Due
to the size of the repository, it is not feasible, to enrich the EA model itself
with this additional security relevant information as proposed by other authors
[9,13], because it would be too much effort and enterprise architects classically
lack the needed security knowledge. From these observations, we deduct following
requirements:

1. Should contribute towards automation of the cyber security analysis
of ArchiMate models. With the help of model transformation rules, we
map the ArchiMate metamodel to the coreLang metamodel, to facilitate the
automated transfer of models. Once this step is completed, we can perform
the automated cyber security analysis with the help of the securiCAD attack
simulations. Thus, the EA models can be reused for security analysis and
every time the EA model is updated, the security analysis can be updated as
well.



Analyzing EA Models by Means of MAL 425

2. Should reuse existing ArchiMate models. Effort for security analysis
can be substantially reduced by reusing information that is already available
in an organization. One possible source for the underlying structure of an
organization can be EA models [9], that are often maintained in ArchiMate
[7,8]. Thus, we rely on this notation for our approach, while aiming for a
generalization for other notations in future. However, most EA practitioners
model their architecture at a high level of abstraction. This could pose certain
challenges when trying to perform security simulations due to the difference
in the levels of abstraction, which we address with the next requirement.

3. Should not add additional security elements to existing ArchiMate
models. Considering the fact that EA models do not natively support cyber
security analysis, it stands to reason that the information that is needed to
perform these analyses is also not included in the models (separation of con-
cerns). Thus, we consider that our approach to transfer the models into an
environment that is designed with the purpose of performing these analyzes
and adding the relevant information is suitable for achieving our goals. More-
over, we close the gap between the high abstraction of EA models and the
needed detail level for security simulations by using different configurations of
the elements to reflect uncertainty about missing information such as concrete
versions of applications [12].

4. Should show a simple overview of the cyber security analysis results
in the original ArchiMate models. Considering the complexity of data
resulting from the attack simulations which can span through 1000 s s of
scenarios, it stands to reason that not all of the results are useful to transfer
back to the ArchiMate models. Especially, managers are usually interested
in abstracted information [14]. Thus, the existing elements of the EA model
will be enriched with properties reflecting an abstraction of a few scenarios
(based on likelihood and impact).

For this research, we adhere to the guidelines of the Design Science Research
by Peffers et al. [15], which is also reflected in the structure of this paper.
Section 2 presents the background on the ArchiMate and MAL languages and
discusses the related work. In Sect. 3 we propose the mapping between the
ArchiMate and the coreLang, while in Sect. 4 we demonstrate how this can be
used with the help of a case study. Sections 5 and 6 focus on the discussion and
conclusions.

2 Background

2.1 ArchiMate

ArchiMate is a language maintained by the Open Group that can be used to
model EAs and their transformations in relation to the motivation behind them
[16]. The language is structured according to a two-dimensional framework which
contains six layers and four aspects.



426 A. Aldea and S. Hacks

At the intersection of the six layers and the three aspects (except for Moti-
vation), certain views are defined. These views determine, which concepts and
relations can be used to visualize a certain part of the architecture that is rele-
vant to this part of the framework. Thus, for each of the views a metamodel is
defined.

For each of these layers and aspects, certain concepts are defined. The Busi-
ness layer contains concepts relating to the services offered to customers and the
processes and actors that support it, while the Application layer includes con-
cepts relating to the software applications and data used to support the business
layer, the Technology layer focuses on the infrastructure of the organization with
servers where data can be stored and networks that connect the devices, and the
Physical layer helps describe how certain physical products can be produced.

The concepts in the Motivation aspect can be used by organizations to model
the reasons for the changes in the architecture, while the Strategy layer can
help define how these changes can be done at a higher abstraction level than
the other four aforementioned layers. The Implementation and Migration layer,
on the other hand, helps organizations with planning how these architectural
transformations can be performed in order to achieve the best outcomes.

2.2 MAL

MAL is a meta-meta language, which combines probabilistic attack and defense
graphs with object-oriented modeling. It is used to create Domain-Specific Lan-
guages (DSLs) that provide a meta language, which can be used to create models
for attack simulations. Such a DSL defines the required information for the mod-
els and specifies the generic attack logic about the domain studied. For a detailed
overview of MAL, we refer to the original paper [17].

To create a MAL-based language, one needs to identify all relevant assets
and their associations. Each asset is comprised by multiple attack steps, which
lead to “−>” 0 to n attack steps. Each attack step is either of the type OR “|”
or AND “&”. If one parent attack step of an OR attack step is compromised,
an attacker can elaborate on this OR attack step. If all parent attack steps of
an AND attack step are compromised, an attacker can elaborate on this AND
attack step. Additionally, one can define the expected effort an attacker needs
to spend on an attack step also called time-to-compromise (TTC). Further, an
asset can contain defenses “#”. Combining all possible attack paths lead to the
attack/defense graph used for the attack simulation.

MAL provides the frame to create a DSL for threat modeling and attack
simulations from scratch. At the same time, we recognized that many DSLs
created with MAL share common concepts. Thus, we proposed coreLang [18] as
means to reduce unnecessary redundant work. coreLang provides a basic set of
assets that serve as starting point to model more advanced MAL DSLs or act
as a basic language to model simple environments [11]. Figure 1 illustrates the
overall structure of coreLang with respect to the concepts used in this work and
presented next. For more details, we refer to the original publication [18].

The central concept that we use in this work is Application, which is char-
acterized by its executability i.e., being software. Moreover, an Application is



Analyzing EA Models by Means of MAL 427

Fig. 1. Excerpt of coreLang containing used concepts (adapted from [18]).

able to execute another Application such as an operation system executing a
program. For the execution itself, some hardware is needed that performs the
actual calculations. This functionality is modeled as System.

Between two Application not just an execution relationship is possible, but
they can also communicate with each other e.g., via interfaces. Such a commu-
nication is realized by a Connection, which is always intended and can take
place within the same or different networks. On the other hand, Application
can be contacted unintended e.g., by performing port scans. To reflect this, an
Application can be exposed to a Network. If an attacker has access to such a
Network, they can connect to all exposed Application.

Usually, an attacker is interested in the Data that is processed by the
Application. Generally, Data can have two states. Firstly, it can be stored
by an Application. Then, an attacker would be able to read, write, or delete
the Data. Secondly, Data can be in transition between two Application. Then,
the attacker can affect the Data, e.g., by a man-in-the-middle (MITM) attack.

While introducing coreLang, we mentioned its basic structure, which causes
the abstract nature of the concepts. Thus, these assets cannot contain concrete
attack steps and related TTC. Instead, just attack concepts, such as MITM on
Connection, are contained. To enable the end-user to use coreLang nonetheless,
the concepts of Vulnerability and Exploit have been introduced. They allow
the end-user to relate a Vulnerability to an Application, which allows the
attacker to compromise the Application via an Exploit. Moreover, they mirror
the Common Vulnerability Scoring System (CVSS)1 allowing to compute TTC.

3 Mapping

Before, we presented the basic concepts of ArchiMate, MAL, and coreLang. In
our mapping, we rely on ArchiMate, as it is a wide-spread standard for EA mod-
eling [7,8]. We opted for MAL, as it provides a framework for automated attack
simulations, while being flexible towards different domains [17,19]. Finally, we
opted for coreLang as it represents basic concepts in IT systems [18] and it has
already been successfully used in similar contexts [12,20]. Next, we motivate our
mapping from ArchiMate to coreLang. However, ArchiMate contains a broad

1 https://www.first.org/cvss/specification-document.

https://www.first.org/cvss/specification-document


428 A. Aldea and S. Hacks

range of different element types and, therefore, we reason which categories of
element types we consider for being mapped.

First, we check which layers of ArchiMate are eligible to be mapped to core-
Lang. The Strategy layer models strategic directions and decisions of organiza-
tions [16]. As coreLang contains solely technical assets, there are no equivalents
and, thus, we neglect this layer. A similar argumentation can be applied to the
Business layer, as it technological-independently models the organization [16].

The Application layer describes the structure, behavior, and interactions of
the organization’s applications [16]. This relates to the executable assets [18]
and, thus, we consider this layer for our mapping. The Technology layer models
the technical infrastructure of organizations [16], which is classically referred to
executables that are not exposed to the end-user. From a security perspective,
these executables behave as on the Application layer. Moreover, the Technology
layer includes also the Physical layer, which is used to model the physical world,
i.e., hardware [16]. coreLang also foresees the modeling of hardware components
[18], which lets us consider this layer.

The Implementation & Migration layer encodes the evolution of the EA [16].
However, MAL DSLs take a static view on the architecture [17], which makes this
layer not of interest for our mapping. Finally, the Motivation layer depicts the
motivation for the EA’s evolution [16], which also has no equivalent in coreLang.

As we have determined the layers to be considered, we can shrink further
down the number of element types that we need to evaluate for the mapping, as
there are basically three different aspects in ArchiMate.

Active Structure element types are performing actions in the EA, i.e., appli-
cations serving the business. Consequently, these element types are of interest
for security analysis. Such Active Structures perform Behavior, which are the
dynamic aspects of organizations [16]. Behavior unites the activities of several
Active Structures and are a logical grouping. Consequently, we do not consider
those elements for our mapping. Passive Structure element types represent data
objects [16]. Attackers are interested in the data of organizations and, therefore,
they constitute the ultimate goal in our attack simulations.

Next, we take a close look at the remaining ArchiMate element types to be
mapped to coreLang (cf. Table 1). Obviously, we map Application Component to
Application and Data Object to Data. As Application Collaboration represents
multiple Active Structure elements [16], it is a logical construct and we do not
map it. Similarly, Application Interface is a point of contact related to a certain
Application Component and is not related to an own execution.

Equally, we can argue for Technology Collaboration and Technology Inter-
face. In contrast, Node and Device are characterized by hosting executables [16]
and are in line with the conceptualization of System. Such executables in the
Technology Layer are System Software, which execute Application Component
[16] and are mapped to Application. The communication between several Node
is modeled by Path. This communication can also take place along several net-
works [16], which leads to a mapping to Connection. If the Node share the same
network, this connection is codified by a Communication Network [16], which is
in line with Network. Finally, Artifact is “a piece of data” [16], which matches
Data.



Analyzing EA Models by Means of MAL 429

Table 1. Mapping from ArchiMate to coreLang

Layer Element type

A
p
p
li
ca
ti
on

D
at
a

S
y
st
em

N
et
w
or
k

C
on

n
ec
ti
on

P
h
y
si
ca
lZ
on

e

Application Application component !

Application collaboration

Application interface

Data object !

Technology Node !

Device !

System software !

Technology collaboration

Technology interface

Path !

Communication network !

Artifact !

Physical Equipment !

Facility !

Distribution network

Material

Equipment are physical machines that process materials [16]. These machines
are controlled by software, which they host. Consequently, we map Equipment to
System. A Facility is a grouping of Equipment deployed at one physical location
[16]. The best representation for this is PhysicalZone. A Distribution Network
transports Material or energy [16]. As coreLang is not equipped with assets
representing physical concepts, there is no representation neither for both.

4 Demonstration

To realize the automated attack simulations for EA models, we follow a five-
stepped process. (1) The EA model is translated to its graph representation.
(2) The graph is modified to match coreLang specificities. (3) The graph is
transformed into its representation, which can be interpreted by securiCAD.
(4) Additional vulnerability information is added to the securiCAD model. (5)
The simulation results are imported and visualized in the original EA model.
Hitherto, the steps (1) to (3) are fully automatized, while (4) and (5) need still
some manual work.



430 A. Aldea and S. Hacks

4.1 Illustrative Example

We choose to demonstrate the application of our proposed mapping and sim-
ulation with the help of the ArchiSurance case study, which is used in several
previous papers [7,21]. We expand upon the previous details available in this
case and enrich it with information that is necessary for our demonstration.
Below, we provide a short description of the case.

ArchiSurance is an insurance merged from three independent insurance orga-
nizations, because they could not maintain their competitive advantage without
significant investments in IT. By merging, they are able to reduce costs, invest
in new technology, maintain customer satisfaction, and explore opportunities in
emerging markets. After the merger, ArchiSurance went through several trans-
formations of their landscape in order to unify in the customer facing processes,
reduce redundancies, and merge customer data from the different data centers.

Due to these transformations, the organization is concerned that their land-
scape might be facing new threats. The need for insight into possible security vul-
nerabilities is emphasized due to a recent increase in cyber-attacks, especially in
the insurance industry. Several insurances were subjected to ransomware attacks
which resulted in a loss of trust from customers and potential lawsuits.

4.2 Processing

To perform the attack simulations for ArchiSurance, we followed a five-stepped
process implemented in our prototype2. First, the XML of the ArchiMate model
is translated to its graph-representation. Therefore, each element becomes a
node and each relationship an edge. Moreover, we preserve the name, id, and
ArchiMate element/relationship type as attributes to the node/edge.

Second, we modify the graph to match assumptions made in coreLang. On
the one hand, we add additional nodes for certain relationships as the respective
relationships are not foreseen in coreLang. This is the case for Application Com-
ponent serving another Application Component. In coreLang, Application are
just linked directly to each other if one is executing the other. A communication
as indicated by “serving” is realized via a Connection. Therefore, we introduce
a Connection for such relationships and link it to the related Application.

Additionally, it is not presumed that Device or Node (mapped to System) are
directly exposed to a Communication Network (mapped to Network). Instead,
the operation system (i.e., System Software) running on the Device or Node is
communicating via the Communication Network. Consequently, we add for each
of those communications a System Software and related edges.

The last modification is related to the access of ArchiMate elements to Data
Object/Artifact, which is from the former to the latter. In contrast, coreLang
defines that Data is accessed by Application. To overcome this, we simply
inverse the direction of the respective edges in the graph-representation.

Third, the graph is translated into a securiCAD format [19], the tool we use
for attack simulations. This translation is guided by the mapping presented in
2 https://github.com/simonhacks/EA-Resilience.

https://github.com/simonhacks/EA-Resilience


Analyzing EA Models by Means of MAL 431

Fig. 2. securiCAD model with external attacker and possible vulnerabilities and
exploits

Sect. 3 and if an ArchiMate element type is not in this mapping, the node and
related edges will be ignored. Moreover, it takes a MAL DSL as input (e.g.,
coreLang [18]) to ensure that the produced result conforms to the DSL.

Fourth, we enrich the securiCAD model (cf. Fig. 2) with security relevant
information on the attack surface, possible vulnerabilities, and exploits as core-
Lang does not provide such information by itself [18]:

– We assume that ArchiSurance uses WordPress to host their Web portal and
WooCommerce as plugin to sell their insurances to the customers. The used
WooCommerce version allows unauthenticated users to upload files even with
executable content so that the installation can be overtaken3.

– As the Call center application of ArchiSurance, they use the bitrix24 software.
The used version allows for a server-side request forgery (SSRF)4, which can
be exploited to get deeper into ArchiSurance’s network.

– Customer Data Access is provided by an application, which runs on an oracle
cloud instance. Due to CVE-2021-23205, an attacker can take over the storage
gateway and influence other applications hosted on that infrastructure.

3 https://nvd.nist.gov/vuln/detail/CVE-2021-24212.
4 https://nvd.nist.gov/vuln/detail/CVE-2020-13484.
5 https://nvd.nist.gov/vuln/detail/CVE-2021-2320.

https://nvd.nist.gov/vuln/detail/CVE-2021-24212
https://nvd.nist.gov/vuln/detail/CVE-2020-13484
https://nvd.nist.gov/vuln/detail/CVE-2021-2320


432 A. Aldea and S. Hacks

– Home and Away Policy Administration is an own implementation and, hence,
it is not possible to gather vulnerabilities from a central repository. Therefore,
we use the UnknownVulnerability and UnknownExploit with a low proba-
bility to be present to express that there might be a security issue in this
application.

– Financial Application is hosted in an SAP environment and implemented in
NetWeaver. A security scan could discover a weakness6 that allows an attacker
to inject commands that endanger the integrity of the system.

– Due to security restrictions, the Admin Server is not directly connected to
the internet. To provide updates to the machine, it offers a USB interface that
uses USB Pratirodh to allow just encrypted devices. However, an attacker can
change usernames and passwords to take over the respective System7.

Finally, the attack simulations can be performed, and the results be exported.
The export contains information on which attack steps have been compromised
by the attacker in which time and with which likelihood. To include this infor-
mation into the original EA model, we determine for each asset one attack step
for which the asset can be seen as fully compromised, i.e., it is annotated with
consequences for confidentiality, integrity, or availability. Then, the TTC of that
attack step is considered to be reported in the EA model.

4.3 Analysis

While mapping the ArchiMate elements to the coreLang is straightforward, the
same cannot be said about incorporating the results of the simulation back into
the ArchiMate model. This is mostly due to the complexity of the simulation
results which provide a multidimensional perspective on each element that is
analyzed. Thus, for each element, several attack steps can be possible, with
varying degrees of probability determined based on 1000 simulations.

For example, in Fig. 3 we see that the ArchiSurance organization uses a Policy
Data Management application to support their Handle Claims business process.
Based on the results of the simulation, this element of the architecture can be
exposed to 24 different attack steps, of which 11 attack steps have a probability
of success that is higher than 0. Thus, to map this information back to the
ArchiMate model, we need to be able to relate all the different attack steps and
their probability values to the Policy Data Management application component.
However, this mapping is not possible to do automatically, as the language does
not currently support this type of data mapping.

Following [22], we propose to use the language extension mechanism and
introduce the concept of Metric as a specialization of Driver. With the help of
the Metric concept, we can relate the different attack steps and their probabil-
ity values to each element of the architecture. For this purpose, we create two
metrics, namely External Attack (attack steps) and Probability External Attack

6 https://nvd.nist.gov/vuln/detail/CVE-2021-33663.
7 https://nvd.nist.gov/vuln/detail/CVE-2017-6911.

https://nvd.nist.gov/vuln/detail/CVE-2021-33663
https://nvd.nist.gov/vuln/detail/CVE-2017-6911


Analyzing EA Models by Means of MAL 433

(probability). The first metric can store all of the possible attack steps while the
second metric can store the numeric values associated with the probabilities.

To make the results of the analysis visible in the ArchiMate model, we use
a color and label overlay. The color is used to show the probability while the
label shows the attack step. The reason for this is that the most important
information, in this case, the probability of an attack succeeding, should be the
most visible. Since it is not possible to visualize in one view all the different
attack steps and their probabilities, we have chosen to show in Fig. 3 only the
most severe attacks that have a probability of success higher than 0. The other
attack steps and their probabilities can be visualized in a similar manner.

5 Discussion

Our work contains several points that need discussion. First, one can criticize our
decision on the used languages. To our best knowledge, there is no alternative
to MAL that would allow automated attack simulation, while already providing
an increasing ecosystem of threat modeling languages for different domains [11].

Fig. 3. ArchiSurance security analysis



434 A. Aldea and S. Hacks

Adapting our approach to other (not MAL) threat modeling languages, might
be challenging as the model transformation would be to be implemented from
scratch, while the rest of our approach could remain same.

coreLang is abstract and does not provide security relevant information by
itself [18]. However, it is the MAL DSL at hand, which is closest to our needs
[11] and has already been used in similar contexts [12,20]. Moreover, other lan-
guages are tailored to more concrete domains [23–25] making it challenging to
find a mapping to a general-purpose language such as ArchiMate. Considering
generalization, there is a growing ecosystem of languages that build on coreLang
[11]. Consequently, our approach can be adapted to these languages by further
refining the mapping. For languages that are not build on coreLang, a completely
new mapping has to be sketched, while the rest of our approach would remain.

ArchiMate is a wide-spread notation for EA models in organizations and
research [7,8]. Therefore, our approach is applicable to a broad range of exist-
ing EA models. However, recent efforts have been taken, to understand EA
models as Knowledge Graphs [26,27]. Considering Knowledge Graph represen-
tation of EA models as input to our approach, would allow us to include all EA
model notations, which have a graph representation, and thus mean a large step
towards generalization from this end. However, this would also include the need
to a generalized mapping from EA model notations towards our desired MAL
DSL. Unfortunately, such a general representation for EA models does not exist.
Hence, this step towards generalization remains for future work.

The second point of improvement is also related to the decision for coreLang,
as the absence of vulnerability information forces us to add this by hand. On
the one hand, we added just exemplary vulnerabilities to the model to avoid
overcrowding the visualization. In a real-world context, one would include all
discovered vulnerabilities. For the demonstration purposes, adding a subset of
possible vulnerabilities is sufficient as we can perform the related attack sim-
ulations and those would just increase in complexity. On the other hand, one
could employ automated vulnerability scans to gather the respective vulnerabil-
ities. However, this would demand an infrastructure to scan, which is not at our
disposal. Similarly, the EA model contains no concrete information on the appli-
cations, which forces us to make assumptions on what exact applications and
which versions are deployed in the EA. Having a real-world example at hand,
which is planned for future work, we will not experience this issue.

Third, the mapping from ArchiMate to coreLang can be differently realized.
The most influential decision was to neglect transitive relations between mapped
elements related to the behavior aspect. For instance, if an Application Compo-
nent is executed by a System Software but it is modeled by the consumption of
a Technology Service, this information will be lost. Unfortunately, it is not that
simple to solve this issue, because a deeper inspection is needed to determine if
a transitive relation should be still contained in the security analysis, which we
plan to address in a future iteration of our research.

Fourth, another issue is related to the fact that coreLang does not allow
System to communicate directly over Network with each other. Therefore, we
introduced additional Application symbolizing the operation system, which



Analyzing EA Models by Means of MAL 435

take care for the communication. As we tried to keep it simple, we introduced
for each connection of a System to a Network such an Application. If a System
has several connections to Network, it results in multiple Application added to
the model. In the next iteration, we aim for a more realistic solving of this issue,
as one System solely can have one operation system.

Fifth, the EA model contains elements named “Firewall”, which are trans-
lated to System, as we just consider the element type and do not perform a
deeper inspection of the elements. However, such a deep inspection is pointless
in our case as the firewall is an exception in coreLang and the rest of the assets
is on an abstract level. In case that there will be a MAL DSL available, which is
more specific than coreLang, then relying the mapping not just on the element
types but also on further information available (e.g., element names) might be
suitable.

Sixth, the transformation of the simulation results back to the ArchiMate
model had to be done manually. Since the ArchiMate language does not support
the complexity of the information resulting from the simulation, certain sim-
plifications had to be made. For example, we could not visualize all the attack
steps that would affect certain elements of the architecture but had to choose
one attack step at a time. To do this, we chose the types of attack steps that
had a probability higher than 0 and have the highest impact on the architectural
element. Similarly, we did not consider all the values, but rather focus only on
the probability value that was calculated. However, this simplified information
can still provide enterprise architects with a good overview of which types of
attack steps can have the most impact and their probability of success.

Furthermore, the purpose of ArchiMate is to support the high-abstraction
modeling of EA elements. Thus, enriching ArchiMate models with the type of
data required for a detailed security analysis as presented in this paper (e.g., ver-
sion or instance number) would not be aligned with the purpose of the language
and falls into the realm of IT service management. While previous work has
proposed the extension of the ArchiMate language to include Security related
concepts [28], this approach is not sufficient to support the simulation-based
analysis that we propose in our paper. In future work, the feasibility of using
a language extension mechanism to support our proposed approach could be
investigated.

Lastly, while we have demonstrated how our approach can be used to conduct
a detailed security analysis of ArchiMate models, additional qualitative analysis
to validate the results is needed. Thus, we plan interviews with EA and Security
experts to validate the usefulness and usability of our approach. Additionally,
to better understand the business impact of these potential security threats, the
analysis should be extended to encompass the link between the technical and
business elements, similar to Ebbers et al. [29].

6 Related Work

There are different efforts to enrich ArchiMate with security information.
Grandry et al. [13] mapped the concepts of an information system security risk



436 A. Aldea and S. Hacks

management to ArchiMate. The main limitation of this work in relation to our
goals and requirements is that the cyber security analysis is done manually and
based only on a conceptual representation. This relies on the ability of the per-
son analyzing the architecture to analyze all of the relevant architectural risks,
as opposed to a simulation-based analysis which is able to run through 1000 s of
scenarios.

Band et al. [28] extended this work and demonstrated the connection between
ArchiMate and other risk and security concepts. Their conclusion was that most
of the common risk and security concepts can be realized in ArchiMate. Aldea
et al. [30] identified relevant metrics to assess the overall resilience of a given
EA model as a means for future research. These works are characterized by
incorporating security or risk relevant information directly into ArchiMate. In
contrast, for our approach it is not needed to make changes to the models itself as
the security information is codified in MAL. Moreover, we perform simulations
to see the architecture’s influence on the security.

Manzur et al. [31] took a step further and enhanced ArchiMate to xArchi-
Mate, which can be used to perform simulations, experimentations, and analyze
EAs by an extension to the ArchiMate meta-model. A similar work was done by
Grov et al. [32] focusing more on risk aspects and developing a tool to visualize
the effects in EA. This is similar to our approach, while we leave the ArchiMate
meta-model untouched and transform the model instead to an instance of a MAL
DSL.

Generally, EA models are a popular input for security assessments. Mathew
et al. [9] elaborated on the reuse of EA related information in a security context.
Therefore, they identified similarities between the management parts of TOGAF
and BSI Grundschutz and proposed a mapping from ArchiMate to the German
BSI Grundschutz’ meta-model. Similarly, Xiong et al. [33] use EA repositories
to predict effects of failing components on the entire architecture. Ebbers et
al. [29] use EA models to aggregate vulnerabilities from assets to a level of
relevance for the management. Lastly, Pavleska et al. [34] took EA models in a
health context and transferred them by hand to securiCAD to perform security
analysis. Similarly, Jiang et al. [35] did with models from the power domain.
All works are like ours as EA related information is reused for security analysis.
However, these were performed by hand, while we aim to automate it.

There are also works reusing security models for EA. Holm et al. [10] proposed
a mapping of the NeXpose Scanner to ArchiMate. Later, they use these models
as foundation for attack simulations in securiCAD [36]. König et al. [37] mapped
the Substation Configuration Language (SCL) to ArchiMate to better ease the
stakeholders’ understanding of the Substation Automation (SA) system and its
architecture. Comparing these works to ours, we recognize that the previous
work focuses on models representing reality and including them in EA models,
while we perform analysis on these models and solely play back the results.

Finally, there are works focusing on the reuse of existing models for attack
simulations in MAL. Firstly, Hacks et al. [38] propose a method to automatically
create a MAL DSL based on an EA model. Secondly, Hacks et al. [12] developed



Analyzing EA Models by Means of MAL 437

a mapping from the Business Process Modeling Notation (BPMN) to coreLang
[18], automatically transform these models to a graph representation, and per-
form attack simulations in securiCAD. We extend the first work by providing a
tool that also translates ArchiMate models into instances of MAL DSLs and the
second work by enabling such transformation for ArchiMate models.

7 Conclusion

In this work, we have presented an automated transformation from EA models
to threat models that are then used to perform attack simulations. Therefore,
we proposed a mapping from ArchiMate to coreLang. With the help of this
mapping, existing ArchiMate models which do not contain any cyber security
information can still be analyzed. This is in line with the first three requirements
mentioned in the 1 section of the paper.

Finally, we incorporate the simulation results back to the EA model to visu-
alize the generated insights for the EA practitioners. With the help of this app-
roach, the original ArchiMate models maintain their value as the single source of
truth regarding the EA and are enriched with the most relevant cyber security
analysis results to help EA practitioners in their decision-making process. To
demonstrate our approach, we developed a first prototype and used the well-
known ArchiMate example of ArchiSurance. This is in line with the fourth
requirement mentioned in Sect. 1.

Still, future work remains. As such, we plan to implement our approach in
different organizations to analyze real-world EAs and further investigate the link
between technical and business assets. Additionally, we will investigate further
a suitable way to cope with the simulation results in the EA model. Moreover,
we are looking forward to a MAL DSL that is tailored for office IT environments
to avoid the need for adding vulnerabilities by hand.

References

1. Zaoui, F., Souissi, N.: Roadmap for digital transformation: a literature review.
Proc. Comput. Sci. 175, 621–628 (2020)

2. Verhoef, P.C., et al.: Digital transformation: a multidisciplinary reflection and
research agenda. J. Bus. Res. 122, 889–901 (2021)

3. Chowdhury, A.: Recent cyber security attacks and their mitigation approaches –
an overview. In: Batten, L., Li, G. (eds.) ATIS 2016. CCIS, vol. 651, pp. 54–65.
Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2741-3 5

4. Lallie, H.S., et al.: Cyber security in the age of COVID-19: a timeline and analysis
of cyber-crime and cyber-attacks during the pandemic. Comp. Sec. 105, 102248
(2021)

5. LaBerge, L., O’Toole, C., Schneider, J., Smaje, K.: How COVID-19 has pushed
companies over the technology tipping point - and transformed business forever
(2020)

6. Hakak, S., Khan, W.Z., Imran, M., Choo, K.K.R., Shoaib, M.: Have you been a
victim of COVID-19-related cyber incidents? Survey, taxonomy, and mitigation
strategies. IEEE Access 8, 124134–124144 (2020)

https://doi.org/10.1007/978-981-10-2741-3_5


438 A. Aldea and S. Hacks

7. Aldea, A., Iacob, M.E., van Hillegersberg, J., Quartel, D., Franken, H.: Mod-
elling value with ArchiMate. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP,
vol. 215, pp. 375–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19243-7 35

8. Barbosa, A., Santana, A., Hacks, S., Stein, N.V.: A taxonomy for enterprise archi-
tecture analysis research. In: ICEIS, vol. 2, SciTePress, pp. 493–504 (2019)

9. Mathew, D., Hacks, S., Lichter, H.: Developing a semantic mapping between
TOGAF and BSI-IT-Grundschutz. MKWI 5, 1971–1982 (2018)

10. Holm, H., Buschle, M., Lagerström, R., Ekstedt, M.: Automatic data collection for
enterprise architecture models. Softw. Syst. Model. 13(2), 825–841 (2012). https://
doi.org/10.1007/s10270-012-0252-1

11. Hacks, S., Katsikeas, S.: Towards an ecosystem of domain specific languages for
threat modeling. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS,
vol. 12751, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79382-1 1

12. Hacks, S., Lagerström, R., Ritter, D.: Towards automated attack simulations of
BPMN-based processes. In: EDOC, pp. 182–191 (2021)

13. Grandry, E., Feltus, C., Dubois, E.: Conceptual integration of enterprise archi-
tecture management and security risk management. In: EDOCW, pp. 114–123,
September 2013

14. Hacks, S., Brosius, M., Aier, S.: A case study of stakeholder concerns on EAM. In:
EDOCW, pp. 50–56. IEEE (2017)

15. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. JIMS 24(3), 45–77 (2007)

16. The Open Group: ArchiMate 3.1 Specification (2019)
17. Johnson, P., Lagerström, R., Ekstedt, M.: A meta language for threat modeling

and attack simulations. In: ARES, p. 38. ACM (2018)
18. Katsikeas, S., et al.: An attack simulation language for the IT domain. In: Eades III,

H., Gadyatskaya, O. (eds.) GraMSec 2020. LNCS, vol. 12419, pp. 67–86. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-62230-5 4

19. Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D., Nydrén, J., Shahzad, K.:
securiCAD by foreseeti: a CAD tool for enterprise cyber security management. In:
EDOCW, pp. 152–155. IEEE (2015)

20. Hacks, S., Butun, I., Lagerström, R., Buhaiu, A., Georgiadou, A., Michalitsi Psar-
rou, A.: Integrating security behavior into attack simulations. In: ARES, pp. 1–13
(2021)

21. Aldea, A., Iacob, M.E., Quartel, D., Franken, H.: Strategic planning and enterprise
achitecture. In: ES 2013, pp. 1–8. IEEE (2013)

22. Aldea, A., Iacob, M.E., Daneva, M., Masyhur, L.H.: Multi-criteria and model-
based analysis for project selection: an integration of capability-based planning,
project portfolio management and enterprise architecture. In: EDOCW, pp. 128–
135 (2019)

23. Hacks, S., Katsikeas, S., Ling, E., Lagerström, R., Ekstedt, M.: powerLang: a
probabilistic attack simulation language for the power domain. Energy Inf. 3(1),
1–17 (2020). https://doi.org/10.1186/s42162-020-00134-4

24. Ling, E.R., Ekstedt, M.: Generating threat models and attack graphs based on the
IEC 61850 system configuration description language. In: SAT-CPS, pp. 98–103.
ACM (2021)

25. Katsikeas, S., Johnson, P., Hacks, S., Lagerström, R.: Probabilistic modeling and
simulation of vehicular cyber attacks: an application of the meta attack language.
In: Proceedings of the 5th ICISSP (2019)

https://doi.org/10.1007/978-3-319-19243-7_35
https://doi.org/10.1007/978-3-319-19243-7_35
https://doi.org/10.1007/s10270-012-0252-1
https://doi.org/10.1007/s10270-012-0252-1
https://doi.org/10.1007/978-3-030-79382-1_1
https://doi.org/10.1007/978-3-030-79382-1_1
https://doi.org/10.1007/978-3-030-62230-5_4
https://doi.org/10.1186/s42162-020-00134-4


Analyzing EA Models by Means of MAL 439

26. Smajevic, M., Bork, D.: From conceptual models to knowledge graphs: a generic
model transformation platform. In: ER. Springer. LNCS (2021)

27. Smajevic, M., Hacks, S., Bork, D.: Using knowledge graphs to detect enterprise
architecture smells. In: PoEM, Springer International Publishing, pp. 48–63 (2021)

28. Band, I., Engelsman, W., Feltus, C., Paredes, S.G., Diligens, D.: Modeling enter-
prise risk management and security with the archimate R©. Language, The Open
Group (2015)

29. Ebbers, F., Hacks, S., Thakurta, R.: The business impact of IIOT vulnerabilities.
In: PACIS 2021 Proceedings, vol. 225 (2021)

30. Aldea, A., Vaicekauskaitė, E., Daneva, M., Piest, J.P.S.: Assessing resilience in
enterprise architecture: a systematic review. In: EDOC, pp. 1–10 (2020)

31. Manzur, L., Ulloa, J.M., Sánchez, M., Villalobos, J.: XArchiMate: enterprise
architecture simulation, experimentation and analysis. Simulation 91(3), 276–301
(2015)

32. Grov, G., Mancini, F., Mestl, E.M.S.: Challenges for risk and security modelling
in enterprise architecture. In: Gordijn, J., Guédria, W., Proper, H.A. (eds.) PoEM
2019. LNBIP, vol. 369, pp. 215–225. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-35151-9 14

33. Xiong, W., Carlsson, P., Lagerström, R.: Re-using enterprise architecture reposi-
tories for agile threat modeling. In: EDOCW, pp. 118–127 (2019)

34. Pavleska, T., Aranha, H., Masi, M., Grandry, E., Sellitto, G.P.: Cybersecurity
evaluation of enterprise architectures: the E-SENS case. In: PoEM, pp. 226–241
(2019)

35. Jiang, Y., Jeusfeld, M., Atif, Y., Ding, J., Brax, C., Nero, E.: A language and
repository for cyber security of smart grids. In: EDOC, pp. 164–170 (2018)

36. Holm, H., Shahzad, K., Buschle, M., Ekstedt, M.: P2CySeMoL: predictive, proba-
bilistic cyber security modeling language. TDSC 12(6), 626–639 (2015)

37. König, J., Zhu, K., Nordström, L., Ekstedt, M., Lagerstrom, R.: Mapping the
substation configuration language of IEC 61850 to ArchiMate. In: EDOCW, pp.
60–68 (2010)

38. Hacks, S., Hacks, A., Katsikeas, S., Klaer, B., Lagerström, R.: Creating meta attack
language instances using ArchiMate: applied to electric power and energy system
cases. In: EDOC, pp. 88–97 (2019)

https://doi.org/10.1007/978-3-030-35151-9_14
https://doi.org/10.1007/978-3-030-35151-9_14

