
. 

* Case studies help industry 
evaluate the benefits of 
methods and tools and provide 
a cost-effective way to ensure 
that process changes provide 
the desired results. However, 
unlike formal experiments and 
surveys, case studies do not have 
a well-understood theoretical 
basis. This article provides 
guidelines for organizing and 
and&zing case studies so that 
they produce meaning@ results. 

Case Studies for 
Method and 
Tool Evaluation 
BARBARA KITCHENHAM and L.EUJZY PKXARD, 

National Computing Centre 
SHARI LAWRENCE PFLEEGER, City University 

Y ou have read about a tive improvement? 
new technique or tool in IEEE Software Norman Fenton, Shari Lawrence 
or elsewhere, and you are considering Pfleeger, and Robert Glass suggest 
its use on your project. If it worked for that rigorous experimentation is need- 
someone else, how do you know it will ed to evaluate new technologies and 
work for you? The last decade has seen their effects on our organizations, 
explosive growth in the number of processes, and products.2 Such scientif- 
software-engineering methods and ic investigation is essential to under- 
tools, each one offering to improve standing our processes and products, 
some characteristic of software, its to increasing our customers’ confi- 
development, or its maintenance. With dence in our products, and to making 
an increasing awareness of the compet- software engineering’a science rather 
itive advantage to be gained from con- than an art. 
tinuing process improvement, we all Suppose you have decided to evalu- 
seek methods and tools that will make ate a technology. How do you pro- 
us more productive and improve the ceed? Do you do a survey? An experi- 
quality of our software. But disaster ment? A case study? In this article, we 
can result from introducing inappro- discuss the conditions under which 
priate technology to a software-pro- each type of investigation is appropri- 
duction department.’ How do we ~ ate. Then, because good case studies 
ensure that our changes lead to posi- 1 are as rare as they are powerful and 
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informative, we focus on how to do a either a case study or a formal experi- For all three investigative tech- 
proper and effective case study. ment. A formal experiment requires niques, you must understand which 
Although they cannot achieve the sci- appropriate levels of replication, and variables you can control and how to 
entific rigor of formal experiments, experimental subjects and objects that measure the results. Formal experi- 
case studies can provide sufficient are chosen at random within the con- ments are sometimes difficult to con- 
information to help you judge if specif- straints of an experimental design. duct when the degree of control is lim- 
ic technologies will benefit your own + If the study looks at many teams ited. In order to impose full control, 
organization or project. Even when and many projects, it formal experiments are 
you cannot do a case study of your may be a formal experi- often small, which is a 
own, the principles of good case-study ment or a survey, de- 
analysis will help you determine if the DIFFERENT METHODS ;;“;!‘,~;~e;h~y~ 
case-study results you read about are ::i$% % ‘+it’itkt: YIELD DIFFERENT 
applicable to your situation. projects was planned or 

post hoc. Thus, any 

I 

from the laboratory to a 

ENVIRONMENTAL real project. Thus, case 

DESIGNS, ANALYSIS 
studies are particularly 

investigation can be important for industrial 
EMPIRICAL INVESTIGATION METHODS considered a case study, 

formal experiment, or TECHNIQUES, AND evaluation of software- 

CONCLUSIONS. 
engineering methods 

In their landmark paper, Victor Basili, survey. and tools because they 
Richard Selby, and David Hutchens However, the differ- can avoid scale-up prob- 
described a framework for quantitative ences among these lems. Whereas formal 
software-engineering studies.3 They methods are also reflected in their experiments sample over the variables 
defined software-engineering experi- scale. By their nature, since formal that are being manipulated (so that you 
ments in terms of a two-dimensional experiments must be carefully con- have a case representing each possible 
classification scheme: trolled, they are often small in scale: situation), case studies sample from the 

+ Single-project studies, which exam- “research-in-the-small.” Case studies variables (representing the typical situ- 
ine objects across a single team and a usually look at what is happening on a ation). 
single project. typical project: “research-in-the-typi- Case studies are easier to plan than 

+ Multiproject studies, which exam- Cal.” And surveys try to capture what is experiments but are harder to interpret 
ine objects across a single team and a happening broadly over large groups and difficult to generalize. A case study 
set of projects. of projects: “research-in-the-large.” can show you the effects of a technolo- 

+ Replicated-project studies, which The differences among research meth- gy in a typical situation, but it cannot 
examine objects across a set of teams ods is important because the experi- be generalized to every possible situa- 
and a single project. mental design, analysis techniques, tion. For example, a case study may 

+ Blocked subject-project studies, and conclusions they yield differ with show you that the use of object-orient- 
which examine objects across a set of each type. ed languages increases the level of 
teams and a set of projects. reuse on your banking-system project, 

Many published software-engineer- Choosing a technique. Thus, the choice but it cannot verify that object orienta- 
ing experiments and case studies refer of investigative method depends in tion always improves reuse. 
to this classification scheme when part on the size and nature of the orga- On the other hand, a formal experi- 
explaining how their studies were car- nization or project that you want to ment is likely to be useful for investi- 
ried out, and it is very useful for under- investigate. It also depends on whether gating alternative methods of perform- 
standing how the investigation was you are studying the technology in ing self-standing tasks. For example, 
done; the box on pp. 54 defines some advance or after the fact. If you are try- you can perform an experiment to 
other common experimental terms. ing to choose among several compet- assess the effects of several program- 
However, we believe this classification ing methods or tools, you may orga- design notations, such as flowcharts or 
must be extended to consider the for- nize your study as a formal experiment pseudocode, on the resulting reliability 
mality of the experimental design. or a case study. If you are establishing or understandability. Here, formal 

+ If the study focuses on a single a pilot project to assess the effects of a experiments are appropriate because 
project, we prefer to ‘call it a case study, change, you will probably choose to do + self-standing tasks can be isolated 
because it is not possible to have a for- a case study. But after the change has from the overall product-development 
ma1 experiment without replication. already been implemented across a process and investigated formally 

+ If the study involves many pro- large number of projects, a survey will without being unrepresentative of the 
jects or a single type of project that is help you to d ocument the benefits of way they are actually performed; 
replicated several times, it can be the change. + the results of self-standing tasks 
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EXPERIMENTAL TERMIWOLORY 

The most important concept in a formal experiment is the evrperimewzl 
~~/&esis, which defines what the experiment is intended to test. For example, a 
software experiment may investigate if design.method .A leads to better qualit) 
software than design method B. The corresponding hypothesis is: Design 
method A yields better quality software than design method B. 

An experimental hypothesis usually asserts that different ireaments have dif- 
ferent effects on experimental subjects or objects. In the context of software 
experiments, a treatment is usually a method or tool. To draw any conclusions 
from an experiment, there rnu~t be at least ~U‘O treatments, because hypothesis test- 
ing is comparative. Thus, the result of applying one treatment is compared with 
the result of applying another treatment, to determine if there is any difference. 

In many experiments, one of the treatments, the ~.oo,rt~ol, is equivalent to the 
status quo. The use of a new method or tool is then compared with the control. 
However, software experiments have sometimes used the concept of a control 
incorrectly by assuming that the alternative to using method X is not using the 
method at all. However, if software staff using method X produce better prod- 
ucts than software staff who do not use X, we cannot draw a valid conclusion 
about the effectiveness of X. We cannot tell if the difference in product quality 
is due to using X or simply due to the discipline of using a method. Moreover, 
we cannot tell if “not using x” means not using a method at all, or whether the 
status-quo group is actually using an informal or undocumented method of 
some kind. This distinction may not be important if your project is deciding 
whether or not to use X, but it is very important if another project or company 
wants to apply experimental results generated by other research groups. Thus, 
for experimental results to be generalized, there must be either two alternative 
treatments or a well-defined control. 

We measure the effects of the change in method or tool by measuring the 
rarponrr vatiables, measures taken to test the hypothesis. A difference iri treat- 
ments should be visible by examining differences in the values of the response 
variables. The specific response variables should be derived directly from the 
hypothesis. However, we often use surrogate measures instead of direct mea- 
sures. For example, we may measure product reliability by counting the number 
of faults detected during testing, even though reliability reflects problems 
encountered by the user. Use of surrogate measures should be explicitly justi- 
fied, because poor surrogate measures can invalidate the results of an experi- 
me&. 

Esprrimental subjects and experi~~ental o&e@ are the people or things involved 
in an experiment. In s&ware experiments, experimental subjects are individuals 
or groups (teams) who use a method or tool. Experimental objects may be the 
programs,.algorithms, or problems to which the methods or tools are applied. 

Srute vti& are measures used to describe the experimental subject, 
objects, and conditions. They capture facts that are likely to affect the 
response variables. 

can be judged immediately, rather than 
awaiting the results of a long develop- 
ment process, so that the experiment 
‘does not delay project completion; and 

+ the results of self-standing tasks 
can be assessed in isolation from other 
project processes, so that small bene- 
fits can be identified and distinguished 
from other variables: 

-’ Intvw r&s.’ The reward for a 
well-designed exptiriment is results 
ttfiat are easier to generalize. Formal 
experiments are essential if you are 

a. 

- 

/! 

looking for results that are broadl! 
applicable across many types of pro, 
jects and processes. Thus, forma 
experiments are important for the soft 
ware-engineering research community 
but they may not be necessary for : 
process-improvement program tha 
applies only to your particular organi 
zation. For example, if you want tc 
find out if using Ada will improve youl 
project’s software, but you do not neec 
to know if using Ada will improve 
everyone’s software, then a forma 
experiment may be overkill - you car 

rely on a case studv. 
However, even with formal experi- 

ments you must be careful - formal 
experiments do not generalize outside 
the controlled experimental condi- 
tions. For example, if you demonstrate 
that Ada improves real-time software 
using a formal experiment, you cannot 
guarantee Ada will improve software 
for data-processing systems. 

A case study is usually preferable to 
a formal experiment if 

+ the process changes are very wide- 
ranging. This means that the effect of 
the change can be assessed only at a high 
level because the proces change re- 
presents many detailed changes 
throughout the development process. 
For example, if your project is chang- 
ing from structured to object-oriented 
methods, the repercussions could af- 
fect all aspects of your processes and 
products - too much for you to con- 
trol and measure. 

+ the effects of the change cannot 
be identified immediately. For exam- 
ple, if you want to know if a new de- 
sign tool increases reliability, you may 
have to wait until after delivery to as- 
sess the effect on failures. 

Case studies are a standard method 
of empirical study in various “soft” sci- 
ences such as sociology, medicine, and 
psychology, but there is little formal 
documentation available on how to 
perform a proper case study; Robert 
Ym’s book is a notable exception! How- 
ever, Yin says that a case study should 
be used when “a how or why question 
is being asked about a contemporary 
set of events, over which the investiga- 
tor has little or no control.” For soft- 
ware engineering, we need case studies 
to evaluate not only how or why, but 
also “which is better.” In this article we 
concentrate on the “which is better” 
type of case study. 

Survey advantages. By combining the 
advantages of case studies (applicability 
to real-world projects) with those of 
experiments (replication that mini- 
mizes the problems of unusual results) 
surveys are particularly useful. Surveys 
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II 

CHECKllSTFORCASE=STUDYPl.AWWlWG 

This checklist, along with the seven steps to design and administer case 
studies, will help you undertake a valid investigation. 

can be used to ensure that process 
changes are successful throughout an 
organization, because they collate ex- 
perience from several different pro- 
jects. However, data collection can 
take a great deal of time, and the re- 
sults may not be available until after 
many projects are completed. In med- 
ical research, millions of patients may 
undergo a particular treatment or use a 
particular drug simultaneously, so it is 
relatively easy to build up a large a- 
mount of data quickly. There are fewer 
such opportunities in software engi- 
neering because it is more difficult to 
find comparable experimental objects, 
because software measures are not used 
consistently, and because there is no 
framework to review and collate exper- 
imental results. 

The most common form of survey 
is based on distributing questionnaires 
that elicit opinions about the benefits 
of technology.’ In a different type of 
study, David Card, Frank McGarry, 
and Gerry Page6 analyzed project data 
from the University of Maryland’s Soft- 
ware Engineering Laboratory, looking 
at the effects of technology on NASA’s 
produc&ty and quality. Card’s group 
analyzed existing data, rather than so- 
liciting new information, a technique 
used frequently in other disciplines. 

No one type of empirical study is 
better than any other; each is appropri- 
ate in particular situations. But experi- 
ments and surveys are traditional “hard- 
science” techniques that are supported 
by a rich literature describing how to 
design and administer them. Thus, for 
the rest of,this article, we concentrate 
on case studies in order to provide 
more rigor to a neglected discipline of 
investigation. 

CASE STUDY GUIDELINES 

There are seven steps to follow in de- 
signing and administering case studies: 

1. Define the hypothesis. 
2. Select the pilot projects. 
3. Identify the method of comparison. 
4. Minimize the effect of confound- 

I’ 

Cars study context 
1. What are the objectives of your case study? 
2. What is the baseline against which you will compare the results of the 

evaluation? 
3. What are your external project constraints? 

Setting the hypothesis 
4. IVhat is your evaluation hypothesis? 
5. How do you define, in measurable terms, what you want to evaluate (that 

is, what are your response variables and how will you measure them)? 

6. What are the experimental subjects and objects of the case study? 
7. When in the development process or life cyle will the method be used? 
8. When in the development or life cycle will the response variables be 

measured? 

vdiiting the hypothesis. 
9. Can you collect the data you need to calculate the selected measures? 
10. Can you clearly identify the effects of the treatment you want to evaluate 

and isolate them from the other influences on the development? 
11. Have you taken adequate procedures to ensure that the method or tool is 

being correctly used? 
12. If you intend to integrate the method or tool into your development 

process, is the method or tool likely to have an effect other than the one 
you want to investigate? 

13. Which state variables or project characteristics are most important to 
your case study? 

14. Do you need to generalize the result to o;her projects? If so, is your pro 
posed case study project typical of those projects? 

15. Do you need a high level of confidence in your evaluation result? If so, 
do you need to do a multiproject study? 

Amlyhg the results 
16. How are you going to analyze the case study results? 
17. Is the tyPe of case study going to provide the level of confidence you 

require? 

ing factors. 
5. Plan the case study. 
6. Monitor the case study against 

the plan. 
7. Analyze and report the results. 
These steps, which help ensure that 

you can draw valid conclusions from 
your investigation, are related to the 
four criteria for research-design quality:4 

+ Construct validity. Establish cor- 
rect operational measures for the con- 
cepts being studied. 

+ Internal validity. Establish a causal 
relationship and distinguish spurious 
relationships. 

* External validity. Establish the 
domain to which a study’s findings can 
be generalized. 

+ Experimental reliability. Demon- 
strate that the study can be repeated 
with the same results. 

For simplicity, we explain the steps 
by assuming that you are testing a new 
method on an actual software-develop- 
ment project. The box on this page 
provides a checklist to help you plan a 
case study. 

Define the hypothesis. You begin by 
defining the effect you expect the 
method to have. This definition must 
be detailed enough to make clear what 
measurements are needed to demon- 
strate the effect. For example, if you 
expect the new method to improve 
productivity, you must state if effort 
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Variable Method A 

-----~ ~~ .-~-~~~~~~~~~~ ~-~ -- Productivity 0.054 
(function points/hour) 

Size (function points) 118 168 

Team experience (years) 1 1 

Project management 
experience bears) 

1 1 

Duration (months) 10 9 

Function point 2s 27 

and duration will be affected and how. 
Without this information, you cannot 
identify, measure, and collect the data 
you need to draw valid conclusions. 

It is also important to define what is 
not expected to happen. Formally, we 
can never prove hypotheses, we can 
only disprove them, so we state a null 
hypothesis to say that there is no dif- 
ference between treatments. However, 
research is proposed and funded based 
on studying the alternative hypothesis: 
there is a significant difference be- 
tween treatments. The formal case- 
study data analysis and evaluation ad- 
dresses the null hypothesis, but you 
should be ready to present your find- 
ings to managers and staff in terms of 
the alternative. 

The more clearly you define your 
hypotheses, the more likely you are to 
collect the right measures, test them 
properly, and achieve construct validi- 
ty. You must specify carefully what 
really interests you. For example, pro- 
cess-improvement programs often de- 
fine quality as the reduction of rework 
and waste, presenting quality in terms 
of defect rates from the perspective of 
a software developer. However, this 
definition differs from the user’s point 
of view, in which operational reliabili- 
ty, efficiency, and usability reflect how 
the user sees the software. 

S&el the pilot pr*. The pilot pro- 
jects you choose must be representa- 
tive of the type of projects your orga- 
nization or company usually under- 
takes. Ideally, you can describe pro- 
jects in terms of significant character- 
istics, such as application domain, pro- 
gramming language, design method, 
and degree,ofmuse,andthenusethissta~ 
variable information to select projects 

that are most typical. Your selection 
should consider not only project type 
but also the frequency with which each 
type is developed. In practice, it may 
be difficult to control the choice of case- 
study projects. However, the extent to 
which the case-study project is typical 
of the organization is central to the 
issue of external validity. If your case 
study is atypical of the projects you 
usually undertake, you will not get 
very useful results. 

Identify the method of comparison. Your 
case study is by nature comparative, 
contrasting the results of using one 
method with the results of using an- 
other. To avoid bias and ensure inter- 
nal validity, you must identify a valid, 
basis for assessing the results of, the 
case study. There are three ways to 
organize your study to facilitate this 
comparison: 

l Select a sister project with which to 
compare. Here, the case study involves 
two projects, one that uses the new 
method and another that uses the cur- 
rent method. Each project should be 
typical of your organization, and both 
should have similar characteristics ac- 
cording to the state variables you have 
chosen. The box on this page describes 
variants of this design. 

l Compare the results of using the 
new method against a company baseline. 
In this case, your company gathers 
data from projects as a standard prac- 
tice and makes data available on such 
things as average productivity or 
defect rate. You can compare the 
response-variable values from your 
case study, which involves a single pro- 
ject using the new method, to the cor- 
responding variables from previous 
projects or a subset of similar projects. 

, 

,’ 

* If the method applies to indiridrlal I/ :I 
components, apply it at random to some I 

product components find not to others. ) 
Here, the case study resembles a for- ~1 
ma1 experiment, because you can use i 
replicated values and standard statisti- 
cal methods to analvze the response ” 

1’ 
I variables. But because the projects are 

not drawn at random from the popula- 
tion of all projects, this is not a true 
formal experiment. This kind of study 
is useful for methods that may be 
applied to different degrees. For 
example, if you want to know what 
level of structural testing is most cost- 
effective, you can measure the level of 
structural testing achieved for differ- 
ent modules and compare testing 
effort and subsequent defect rates (or 
defect-detection efficiency, if you have 
seeded errors). 

Minimize the effect of confounding fac- 
tors. When the effect of one factor 
cannot be properly distinguished from 
the effect of another factor, the two 
factors are confounded. For example, if 
expert software engineers tested tool X 
and novice software engineers tested 
tool B, we cannot tell if the higher qual- 
ity software produced by the experts 
was the result of their experience or of 
using tool A. Confounding factors can 
affect the internal validity of the study. 

Software case studies often have 
confounding factors. The most signifi- 
cant are likely to be: 

+ Learning hoi~’ to use a method 01 

tool as you try to assess its benefits. In 
this case, the effects of learning to use 
the method or tool might interfere 
with the benefits of using it. For exam- 
ple, a decrease in productivity caused 
by the learning curve might hide pro- 
ductivity improvements. To avoid this 
effect, you must separate activities 
aimed at learning how to use a new 
technology from those aimed at evalu- 
ating it. 

l Using staff‘x-ho are either very 
enthusiastic or z?erv skeptical about the 
method or- tool. Staff morale can have a 
large effect on productivity and quali- 
ty. Differences in the response variable 
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, 
may be due to staff enthusiasm, or to 
differences in enthusiasm from one 
developer to another. To minimize this 
effect, you must staff a case-study pro- 
ject using your normal staff-allocation 
method. 

l Comparing different application 
types. For example, the productivity of 
real-time system developers is usually 
lower than for data-processing systems, 
so case studies should not compare 
across application domains. Appro- 
priate selection of case-study projects 
will avoid this problem. 

Sometimes it is possible to control a 
confounding effect rather than elimi- 
nate it. This usually involves designing 
a multiproject case study in which the 
different projects experience different 
conditions. For example, to investigate 
if the benefits of some method or tool 
are influenced by application type, we 
can identify a pair of case-study pro- 
jects for each application type: one to 
use the new method and one to use the 
current method. 

You can sometimes control con- 
founding by measuring the confound- 
ing fac$or and adjusting the results 
accordingly. For example, to study how 
different levels of reuse affect quality 
and productivity, you may select a case- 
study project in which components 
(specifications, designs, or code) are 
being reused, measure the amount of 
each component that is reused, the 
development productivity for each 
component, and the defect rate. If you 
suspect that, in addition to reuse, com- 
ponent complexity affects productivity 
and defect .rates, you can record com- 
ponent complexity and use partial cor- 
relation to assess the relationship 
between percentage reuse, productivity, 
and defect rates, adjusted for complexi- 
ty. 

Plan the case study. Basili, Selby, and 
Hutchens emphasize’that organizations 
undertaking experiments should pre- 
pare an evaluation p1an.j This plan 
identifies all the issues to be addressed 
so that the evaluation runs smoothly, 
including the training requirements, 

the necessary measures, the data-col- 
lection procedures, and the people 
responsible for data collection and 
analysis. Attention to detail contributes 
to experimental reliability. 

The evaluation should also have a 
budget, schedule, and staffing plan 
separate from those of the actual pro- 
ject. A separate plan and budget is 
needed to ensure that the budget for 
the evaluation does not become a con- 
tingency fund for the project itself! 
Clear lines of authority are needed for 
resolving the inevitable conflicts of 
interest that occur when a develop- 
ment project is used to host an evalua- 
tion exercise. 

Monitor the case study against the plan. 
The case study’s progress and results 
should be compared with the plan. In 
particular, ensure that the methods or 
tools under investigation are used cor- 
rectly, and that any factors that would 
bias the results are recorded (such as 
change of staff, or a change in the pri- 
ority of the case-study projects). It is 
essential that you audit conformance 
to the experimental plan and record 
anv changes. At the end 
of’the scdy, you should 
write an evaluation report 
including recommenda- 
tions for changes in pro- 
cedures. 

Kruskall-Wallis method, which bases 
the analysis on rank rather than on raw 
data. (See the box on pp. 59 for refer- 
ences to useful analysis texts.) If you 
have only one value from each method 
or tool being evaluated, no analysis 
techniques are available; you can only 
present the results as we describe next. 

ANALYSIS METHODS FOR CASE STUDIES 

Once you have designed your case 
study and collected the data, you must 
analyze it to determine what has hap- 
pened and if the results are significant. 
Suppose your case study involves a sis- 
ter experiment with one response value 
per project. For example, for each pro- 
ject participating in the study, you mea- 
sure productivity in function points per 
staff hour using method A (the current 
method) and method B (the new me- 
thod). Table 1, using real data,’ shows 
what you might find. 

The data in Table 1 indicate that 
the projects are quite similar with res- 
pect to the state variables: size, team 
experience, project-manager experi- 

ence, duration, and func- 

MAKE SURE TO 
SEPARATE THE 
EVALUATION 
BUDGET SO THAT 
IT DOES NOT GET 
SPENT ON THE 
PROJECT ITSELF. 

Analyze and report the re- 
sults. The analysis pro- 
cedures you follow depend 
on the number of data 
items you must analyze 
(that is, the number of 
response-variable values 
that are available). If your case study 
compared treatments assigned to com- 
ponents at random, you can use stand- 
ard statistical methods, such as analy- 
sis-of-variance and contingency tables. 
Data distribution is important in choos- 
ing an analysis technique. If you can- 
not guarantee that the data is distrib- 
uted normally (according to a bell- 
shaped Gaussian curve), then you must 
use nonparametric tests such as the 

tion-point adjustment fac- 
tor. Thus, the results sug- 
gest that using method B 
would improve produc- 
tivity. However, to draw 
that conclusion, you must 
be sure that both projects 
are typical of those un- 
dertaken by the organiza- 
tion. You must also under- 
stand the factors that are 
important for software 
deielopment in the orga- 

nization that might affect the success- 
ful use of methods A and B. 

In addition to looking at the quanti- 
tative results, you can investigate how 
typical these projects are by reviewing 
the distribution of state-variable values 
over all the projects undertaken by the 
organization. Simple frequency plots 
are useful for depicting the distribu- 
tion of discrete state-variable values for 
an organization. For example, Figure 1 
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Figure 1. Frequency plot showing the 
distribution of discrete values, in this 

Figure 2. Boxplot sbo7i’ing a distribution of‘data zlalaes over a xtide range, ia 
this case the prodact size. Box plots are constructed from jiue statistics: the medi- 

case the team experience for the set of an, the upper jbrrrtb (or upper gua?i?ie), the lower fowtb, the upper tail, and the 
projects from which the case-study pro- 
jects were selected. The plot shows that 

lower tail. The upper and iouer fourths are the 75- and 25-percentile points. 

it is not unuszrai for a team to have 
The upper tail is constructed by multiplying the box length &v 1.5, adding the 

only one year oj‘experience. 
value to the upper jburtb, and truncating to the nearest actual value. The love7 
tuii is constructed .$v a similar process. Values that are larger than the ripper tail 
or smaller than the lover tail are called outiiers. 

shows the team experience for the set 
of projects from which the case-study 
projects were selected. As you can see, 
it is not unusual for a team to have 
only one year of experience. 

When you have state variables that 
cover a wide range of values (such as 
counts or rat&), a boxplot can help 
you evaluate the distribution of data 
values, particularly when data values 
are skewed. Figure 2 shows a boxplot 
of product-size data. 

Boxplots give a simple visual display 
of the distribution of a data set and 
help you see how representative a sin- 
gle point is. If the data set were distrib- 
uted as a classic Gaussian (normal) dis- 
tribution, the mean would be in the 
center of the box, the tail lengths 
would be approximately equal, and the 
distance from the median to the upper 
(or lower) tail would be approximately 
three standard deviations. 

It is clear from Figure 2 that the 
product-size data set is skewed, and 
that the two pilot projects were rela- 
tively small ones (in the lower 25-per- 
cent range). Thus, there is some doubt 
about whether the case-study projects 
were truly representative of the organi- 
zation’s projects. Any productivity 
improvements resulting from method 
B might occur only on smaller projects. 

Boxplots are also useful for con- 
structing a company baseline. Figure 3 
shows productivity distributions data 
from 46 projects that used method A. 
There are no outliers in the data set, 

so the baseline for average projects is 
some productivity value between the 
upper (0.044) and lower (0.076) 
fourths; the upper and lower tails give 
the upper and lower bounds for the 
organization. If you place the produc- 
tivity of a case-study project using 
method B on the figure as an asterisk, 
it becomes clear that the case study 
had unusually high productivity com- 
pared to the company baseline. The 
baseline can be refined further by 
reconstructing it using projects that 
have similar state-variable characteris- 
tics to the case study. 

SAMPl.E CASE STUDIES 

ferent tvnes we have discussed but also 

To see how software-engineering 
case studies can be improved, we turn 

, I  

now to three studies”’ aimed at assess- 
ing the benefits of Fagan inspections.“’ 
The studies represent not only the dif- 

case studies were performed, fairly 
small teams (two to eight people) 

~ worked on specific timcti’onal subsys- 
tems. Staff turnover was low, and peo- 
ple worked on the same team for many 
years. The operating system was writ- 
ten in a variant of Algol 68 and sup- 
ported by a special-purpose database 
environment that maintained records 
of literals, data types, and module 
interfaces, all supported with configu- 
ration control. 

oostdesign fault nrofile of insuected 

Case study 1. The first case study 
used a single project to investigate if 
Fagan &swtions would increase soft- 
ware q&i+ %ithour’ resulting in a 
decrease in productivity. FamtalI~, the 
hypothesis stated that,rhe use of Fagan 
inspections ,has no effect ~4 quality or 
productivity; Forty-three oft the pro- 
ject’s 73 bragrams were given detailed 
design inspections; the rest were not. 
Thus, iWas fiossihle to compare the 

the many uroblems that can result 
from imbroper case-study planning 
and administration. 

The first study compared different- 
ly treated components, the second 
used a company baseline, and the third 
involved sister projects. Each study 
was run for ICL’s VME development 
group. VME is a large general-purpose’ 
operating system (approximately two 
million lines of code) that has been 
under continual evolution since its first 
release in the early 1970s. When the 

brograr& with the postdesign fault 
profile of uninspectcd programs. The 
response variables were fault counts 
and staff effort, with t5ults related to 
where t~~v;ulPi~‘discired~ the major 
stage in the de+:t~p+en~.por>cess or 
postrelease (for a six-month ,period). 
Total project effort and inspection 
effort were both recorded. 

+ Design-inspectivrr sesnlts. The 
case-study procedure ensured that 
several productivin. and quality mea- 
surements were m;~dc. The design 

‘i 

il 
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,  
I  

+  W .G . C o c h r a n  a n d  G M . Cox,  Expe r imen ta l  Des igns ,  2 n d  ed. ,  J o h n  W iley 
&  Sons ,  N e w  York ,  1957:  S t a n d a r d  statist ical text. 

+  D.T. C a m p b e l l  a n d  J. S tanley,  E x p e r i m e n t a l a ? ~ d  Quas i - f i pe r i~ze ta l  
Des ignsf i r  Resea rch ,  R a n d  McNal ly ,  Ch icago ,  1 9 6 6 :  Pract ica l  indust r ia l  exper i -  
men ta l  des ign .  

inspec t ions  de tec ted  5 0  pe rcen t  of  a l l  
faul ts f o u n d  for  this d e v e l o p m e n t  ( u p  
to n i n e  m o n t h s  pos t re lease) .  T h e  
inspec t ions  a c c o u n t e d  for  6  pe rcen t  of  
the  total  d e v e l o p m e n t  costs. T h e  
fau l t -detect ion ra te  w a s  approx ima te l y  
I.2 h o u r s  p e r  bul t .  Howeve r ,  a  m a j o r  
p rob len l  w a s  that  t he re  w a s  n o  bas is  
for  i den t ie ing  if t hese  resul ts  w e r e  
g o o d  o r  b a d  b e c a u s e  the re  w a s  no th -  
i ng  to c o m p a r e  t h e m  with! 

+  S .L. P f leeger ,  “Expe r imen ta l  D e s i g n  a n d  Ana lys is  in  So f twa re  
E n g i n e e r i n g , ” . InnuLr  of So j kwre  E n g i n e e r i n g ,  Vo l .  1  No .  1, pp .  I -20;  D e s i g n  
issues for  so f tware  exper iments .  

S u r v e y  antdys is  
+  W .G . Coch ran ,  S a m p l i n g  Tecbn iqz res ,  2 n d  ed. ,  J o h n  W iley &  Sons ,  N e w  

York ,  1963:  Discuss ion  of  me thodo log i ca l  i ssues of  surveys,  in  par t icu lar  h o w  to 
s a m p l e  a  f ini te popu la t i on  so  that  su rvey  resul ts  c a n  b e  gene ra l i zed .  

+  D. C o g g o n ,  G . Rose ,  a n d  D.J.P. Barke r ,  E p i d e m i o l o g y  fw t he  Unin i t ia ted,  
3 rd .  ed .  , Br i t ish Med ica l  Journa l ,  L o n d o n ,  1 9 9 3 :  S u r v e y  t echn iques  u s e d  in  
med ica l  research .  

4  Pos t inspec t ion  fa d  rates.  T a b l e  2  
s h o w s  the  m a i n  r e s p o n s e  va r iab le  -  
t he  n u m b e r  of  faul ts de tec ted  subse -  
q u e n t  to c o d e  p roduc t ion ,  as  m e a s u r e d  
for  e a c h  g r o u p  of  m o d u l e s  for  d i f ferent  
defec t  types.  Howeve r ,  t he  m o d u l e s  
w e r e  no t  a l l oca ted  to d e s i g n  inspec t ion  
randomly .  In fact, t he  pro jec t  staff se -  
lec ted  for  inspec t ion  on ly  t hose  m o d -  
u les  they  t hough t  w e r e  “diff icult”; 

M a  atdysis  
+  P .G . Hoe l ,  in t roduc t ion  to Mathemat i ca l  & & ties, 3 rd .  ed. ,  J o h n  W iley &  

Sons ,  N e w  York ,  1 9 6 2 .  
+  S . S i ege l  a n d  NJ. Cas te&m,  Jr., N q a r e  S W  fw t he  B e b a v h a i  

Sc iences ,  2 n d  ed. ,  McGraw-Hi l l ,  N e w  York ,  1 9 8 8 :  Class ic  text o n  n o n p a r a m e t r i c  
ana lys is  techn iques .  

+  D.C. Hoag l in ,  F. Moste l ler ,  a n d  J.W . Tukey,  Un&rs tand ingExp lo ra to t y  
Da ta  Analys is ,  J o h n  W iley &  Sons ,  N e w  Yark ,  1 9 8 3 ;  D&Pt i ons  of  b o x p l o e  
a n d  o the r  exp lo ra to ry  da ta -ana lys is  III& +  

“easy” m o d u l e s  w e r e  no t  g i ven  d e s i g n  j ~  

U S E F U L  A N A L Y S IS  T E X T S  

mspect lons .  
T h e  l owe r  ovCra l l -e r ro r  ra te  ind i -  

ca tes  that  the  un inspec ted  p r o g r a m s  
w e r e  s impler .  Bu t  the  i nspec ted  p r o -  i  
g r a m s  r e v e a l e d  the i r  faul ts ear l ie r  in  the  ~  
d e v e l o p m e n t  p rocess  t h a n  the  un in -  1  
spec ted  p rog rams .  B y  the  t ime they  )  

F o ~ ~ h s  pe r  1 0 0  l ines of code  1 ’. , 
C o d e  inspected / I 

(  13 ,334  l ines of code)  
C o d e  not  inspected 

(8 ,852 l ines of code)  i i , 

r e a c h e d  system test, i nspec ted  p r o g r a m s  
a p p e a r e d  to h a v e  h i g h e r  qual i ty  t h a n  
un inspec ted  p rog rams ,  a  s i tuat ion c o n -  
f i rmed by  the  pos t re lease  faul t  rates.  

* Pro l t iems r i tb r d s e  stvdy 1.  Th is  
p i lot  p ro jec t  w a s  c h o s e n  b e c a u s e  the  
t eam w a n t e d  to par t ic ipate.  T h e r e  w a s  
n o  fo rma l  se lec t ion  to e n s u r e  that  the  
pi lot  w a s  rep resen ta t i ve  of  typical  ICL  
pro jects .  Fu r the rmore ,  this p red ispos i -  
t ion to b e  he lp fu l  p r o b a b l y  b i a s e d  the  
resul ts  in  favor  of  the  inspec t ion  tech-  
n ique .  Bu t  the  m a j o r  p r o b l e m  wi th  
this s tudy  w a s  the  n o n r a n d o m  se lec-  
t ion of  m o d u l e s  that  w e r e  sub jec ted  to 
de ta i l ed  d e s i g n  inspect ions.  T h e  d e v e -  
l opmen t  staff m e m b e r s  themse lves  d e -  
c i ded  wh i ch  m o d u l e s  w o u l d  b e  g i ven  
de ta i l ed  inspect ions,  a n d  they  se lec ted  
on ly  t hose  that  w e r e  diff icult. Th is  w a s  
a  sens ib le  a p p r o a c h  for  the  pro ject ,  bu t  
it h a d  a  d isas t rous  effect o n  the  eva lua -  
t ion’s val idi ty. H a d  the  a l loca t ion  b e e n  
r a n d o m ,  a n  ana lys is -o f -var iance  o n  the  
pos tdes ign  qual i ty  of  e a c h  m o d u l e  

C o d e  r e a d i n g  0 . 9 7  0 . 4 5  

Uni t  test 0 . 8 2  0 .0x  

Sys tem test 0 . 2 0  0 . 3 6  

Cus tomer  0.012 0 .04 

~  Overa l l  2.0 1 . 5 4  I I 

F i gu re  3.  Boxp lo t  u s e d  to const lzrct  a  c o m p a n y  base l ine .  In this i rue,  4 6  pro jec ts  
us i ng  m e t h o d  A  a r e  c o m p a r e d  wi th  o n e  pro jec t  us i ng  nrethoc l  Il. T h e  boxp lo t  
s h o w s  that  this s ing le  case  s tudy b a d  zznzzszzal iy  h i g h  p rodzh i’i< v  ~ ~ o l u p a r e d  to the  ,m 
c o m p a n y  base l ine .  

T  .~  
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(measured in defects per hundred lines 
of code) would have revealed if the 
inspections made a significant differ- 
ence. But because difficult modules 
exhibit more defects than simple mod- 
ules even after design reviews, this 
analysis was not valid. Thus the only 
useful result is the overall defect rate 
for each major postdesign activity. 
This problem could have been avoided 
if the case study had been planned and 
controlled as an activity in its own 
right, rather than as an adjunct to the 
development effort. 

Other problems resulted from this 
lack of planning. For example, several 
other response variables were collected 
but could not be properly interpreted 
because there was no basis of compari- 
son. Thus, it was impossible to tell if 
inspections decreased productivity. 

Case study 2. The second case study 
looked at whether Fagan inspections 
would increase software quality through 
a cost-effective detection of defects. A 
single project was used and compared 
with a baseline made up of all other 
concufrent projects. Thus, it was possi- 

REPLICATED PRODUCT DESIGN 

ble to compare the postdesign fault pro- 
file of the pilot project with the postde- 
sign fault profile of other projects. 

The response variables were fault 
counts and staff effort. Here, faults 
were again related to each major stage 
in the development process. In addi- 
tion, faults were classified as design or 
coding faults. Total project effort, effort 
for conventional testing, and inspection 
effort were recorded. As before, the 
pilot project was self-selected because 
the development team was interested in 
the inspection technique. 

+ Design-inspection results. This sec- 
ond case study, involving the production 
of a new subsystem of approximately 
39,000 lines of code, gave results broad- 
ly similar to the first. However, because 
this case study collected data on testing 
and inspection effort, it was possible to 
assess the relative costs of fault detec- 
tion and correction. The inspections 
detected 41 percent of in-house faults 
at a cost of 9 percent of the project- 
development effort. The cost-per-fault 
was approximately 1.6 hours, with an 
average cost-per-fault detected postde- 
sign of 8.5 hours. This result suggests 

It is sometimes possible to develop a product a second time using a different 
development method. This is called a replicated pladact design. To use it: 

1. Replicate an existing product using the new method or tool. 
2. Measure the response variables on both versions of the product. 
3. Compare the two sets of response variables. 
The advantage of this design is that some of the differences between the sis- 

ter projects is eliminated because they both produce the same project. 
However, usually only one of the products is produced under normal commer- 
cial conditions. 

This method is often used when a research group wants to demonstrate the 
superiority of a new method compared with current development methods. 
However, if the research group also undertakes the replication project, the 
results will be biased because the research group will usually have more experi- 
ence with the new method than would the development staff and are more 
motivated to see itsucceed. 

These problems can be overcome if the research group sponsors the devel- 
opment group to undertake both projects to commercial standards, and the 
product that performs best in final system test (or acceptance test) is the one 
released to customers. 

that inspections are a very cost-effec- 
tive fault-detection method. 

+ Postdesign fault profile. When the 
fault profile of the pilot project postde- 
sign was compared with the fault pro- 
file found for other projects during the 
same time, it appeared that postdesign 
faults were again being found earlier in 
the development process, as Table 3 
shows. However, the baseline does not 
include any assessment of variability. 

+ Fault types. Table 4 shows the 
types of fault found postdesign, indicat- 
ing that inspections reduced the num- 
ber of design faults but not the number 
of interface faults (which can be regard- 
ed as a kind of design fault). These find- 
ings were reviewed with the develop- 
ment group, which pointed out that the 
faults were found in code that inter- 
faced to a subsystem developed by team 
members who refused to attend inspec- 
tions. Thus, they reasoned, the results 
actually supported the need for inspec- 
tions. This result emphasizes the im- 
portance of monitoring the pilot pro- 
ject for unexpected effects. If the inter- 
face problems had not been traced back 
to the nonparticipating group, the re- 
sults might have been misinterpreted. 

+ Problems with case study 2. As in 
the first case study, the pilot project 
was not chosen using any formal se- 
lection process. However, the more 
significant problems occurred at the 
analysis stage. The construction of the 
baseline would have been greatly im- 
proved by using a boxplot to indicate 
the extent of natural variability. In some 
circumstances, it might have been bet- 
ter to use a direct measure of faults 
per hundred lines of code during sys- 
tem test as the response measure 
rather than percentages. However, in 
this particular environment, there was 
a considerable variation in basic fault 
rates from different types of project. 
The pilot project was a new utility pro- 
ject and was expected to have lower 
fault rates than some of the more com- 
plex enhancement projects; a baseline 
based on faults per hundred lines of 
code would have to have been derived 
from a very small selection of similar 
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lest Method Pertentoge Faults 
Pilot Project All Ptojetts 

projects. A baseline based on internal Code reading 57.5 37.6 
distribution of faults was valid for all 
projects because they all use the same Cnit test 38.4 SL.’ 

development process. ’ System test 4.1 11.2 
Finally, it is important to note that ! 

the case study used a surrogate mea- 
sure of quality. Actual quality depends 
on the defects found during use, but 
the analysis was based on the defects 
found during in-house testing. Thus 
the conclusions may be misleading. 

1 F&Type Percentage Faults 
1 Pilot Project All Projects 
I 

Case study 3. The third investigation ~ Interface 5.8 2.1 

was not planned as a case study. Rather, 1 
it occurred naturally as two parts of the i Design 8.1 13.3 

same project were developed in differ- / Code 81.0 70.3 
ent ways. At first, the primary part of / 
the project was planned; however, later ! Orher 5.1 14.2 

a large additional functional develop- 
ment was required. The same team 
produced both subprojects, and testing and number of modules. In addition, hat is the next step? 
on each was done by the same staff code from the subproject done without W Software-engineering experi- 
member. Although these subprojects design inspections was of poor quality mentation is a necessary adjunct to 
were not selected to be part of a case (in terms of fault rates) and was more process improvement, and objective, 
study, they were typical of the commer- expensive than the inspected code. meaningful case studies can help us 
cial projects undertaken by the group. The case study is convincing be- understand our processes and control 

Because the project manager want- cause the difference in results is so dra- the improvements. Many case studies 
ed to get the second part of the project matic. In addition, many of the typical are performed, but few are done well. 
completed as quickly as possible, he problems with case-study control and The case-study process is itself in need 
did nor permit any detailed design in- variation were absent because the same of improvement. 
spections. His unstated hypothesis was, personnel were involved, the same Good case studies involve: 
therefore, that detailed design inspec- development environment was used, + Specifying the hypothesis under 
tions cause delays to product develop- and the applications were related. test. 
ment and do not have a major influ- + Problem with case &y 3. Clear- + Using state variables for project 
ence on quality. In effect, what result- ly, the study was not planned in ad- selection and data analysis. 
ed was a case study based on sister sub- Vance. Nevertheless, it conformed + Establishing a basis for compar- 
projects, with response variables de- quite well to case-study requirements isons. 
fined as time to complete production, and resulted in sufficient information + Planning case studies properly. 
effort, and fault rates. to reject the hypothesis that inspec- * Using appropriate presentation 

+ Results. The results, shown in tions increase time to market and do and analysis techniques to assess the 
Table 5, indicate that trading quality not affect quality. However, this study results. 
for productivity simply did not work, is not completely without problems. We must stop and assess each tool 
and the hypothesis can be firmly re- The quality measure was based on and technology before we jump on a 
jetted. The subproject without inspec- prerelease rather than postrelease de- promotional bandwagon. Even when 
tions took far longer to produce than fects, again reflecting a developer’s formal experiments are not available or 
the much larger “high-quality” sub- rather than a user’s view of software possible, we can perform case studies to 
project. Additional time and effort quality. A more subtle problem in- determine if the tool or technology is 
were needed to test the code that had volves whether or not the two parts of helpful on our typical projects. That is, 
not been subject to design inspections. the project are really comparable. Ac- we need not wait until a method is 
This diminished productivity is clear, cording to the subjective opinion of proven effective in every environment; 
even though the state variables show the staff involved, the two subprojects we can run careful tests to see if the 
that the subproject without inspec- were similar in complexity; however, method is useful in our particular envi- 
tions was much smaller than the other there were no objective measures to ronments. 
subproject in terms of absolute size ~ confirm this claim. But such investigation requires the 
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, . 
investment of time and effort, not only 
in planning and carrying out the case 
studies, but also in analyzing and 
reporting the results. The findings of 
academic experiments are often widely 
publicized, as universities encourage 
their staff to publish and disseminate 
results. But the results of industrial case 
studies, less often made available to the 
public, are no less relevant to practi- 

tioners who are seeking new or im- 
proved ways of developing and main- 
taining software. 

The results of case studies are con- 
text-dependent, but we can be more 
confident that a method is generally 
beneficial if encouraging results are 
reported by a number of different orga- 
nizations under a number of different 
conditions. We can also better under- 
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stand the limits of methods and tools if 
we get conflicting reports from different 
case studies. 

We encourage you to assess the work 
of others, not only in terms of the issues 
raised here, but also in terms of whether 
it is applicable to your projects. And we 
encourage you to publish your case- 
study results, to the benefit of the gener- 
al software-engineering community. + 
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