
.

* Case studies help industry
evaluate the benefits of
methods and tools and provide
a cost-effective way to ensure
that process changes provide
the desired results. However,
unlike formal experiments and
surveys, case studies do not have
a well-understood theoretical
basis. This article provides
guidelines for organizing and
and&zing case studies so that
they produce meaning@ results.

Case Studies for
Method and
Tool Evaluation
BARBARA KITCHENHAM and L.EUJZY PKXARD,

National Computing Centre
SHARI LAWRENCE PFLEEGER, City University

Y ou have read about a tive improvement?
new technique or tool in IEEE Software Norman Fenton, Shari Lawrence
or elsewhere, and you are considering Pfleeger, and Robert Glass suggest
its use on your project. If it worked for that rigorous experimentation is need-
someone else, how do you know it will ed to evaluate new technologies and
work for you? The last decade has seen their effects on our organizations,
explosive growth in the number of processes, and products.2 Such scientif-
software-engineering methods and ic investigation is essential to under-
tools, each one offering to improve standing our processes and products,
some characteristic of software, its to increasing our customers’ confi-
development, or its maintenance. With dence in our products, and to making
an increasing awareness of the compet- software engineering’a science rather
itive advantage to be gained from con- than an art.
tinuing process improvement, we all Suppose you have decided to evalu-
seek methods and tools that will make ate a technology. How do you pro-
us more productive and improve the ceed? Do you do a survey? An experi-
quality of our software. But disaster ment? A case study? In this article, we
can result from introducing inappro- discuss the conditions under which
priate technology to a software-pro- each type of investigation is appropri-
duction department.’ How do we ~ ate. Then, because good case studies
ensure that our changes lead to posi- 1 are as rare as they are powerful and

52 07407459/94/§04 w D 1994 IEEE JULY 1995

informative, we focus on how to do a either a case study or a formal experi- For all three investigative tech-
proper and effective case study. ment. A formal experiment requires niques, you must understand which
Although they cannot achieve the sci- appropriate levels of replication, and variables you can control and how to
entific rigor of formal experiments, experimental subjects and objects that measure the results. Formal experi-
case studies can provide sufficient are chosen at random within the con- ments are sometimes difficult to con-
information to help you judge if specif- straints of an experimental design. duct when the degree of control is lim-
ic technologies will benefit your own + If the study looks at many teams ited. In order to impose full control,
organization or project. Even when and many projects, it formal experiments are
you cannot do a case study of your may be a formal experi- often small, which is a
own, the principles of good case-study ment or a survey, de-
analysis will help you determine if the DIFFERENT METHODS ;;“;!‘,~;~e;h~y~
case-study results you read about are ::i$% % ‘+it’itkt: YIELD DIFFERENT
applicable to your situation. projects was planned or

post hoc. Thus, any

I

from the laboratory to a

ENVIRONMENTAL real project. Thus, case

DESIGNS, ANALYSIS
studies are particularly

investigation can be important for industrial
EMPIRICAL INVESTIGATION METHODS considered a case study,

formal experiment, or TECHNIQUES, AND evaluation of software-

CONCLUSIONS.
engineering methods

In their landmark paper, Victor Basili, survey. and tools because they
Richard Selby, and David Hutchens However, the differ- can avoid scale-up prob-
described a framework for quantitative ences among these lems. Whereas formal
software-engineering studies.3 They methods are also reflected in their experiments sample over the variables
defined software-engineering experi- scale. By their nature, since formal that are being manipulated (so that you
ments in terms of a two-dimensional experiments must be carefully con- have a case representing each possible
classification scheme: trolled, they are often small in scale: situation), case studies sample from the

+ Single-project studies, which exam- “research-in-the-small.” Case studies variables (representing the typical situ-
ine objects across a single team and a usually look at what is happening on a ation).
single project. typical project: “research-in-the-typi- Case studies are easier to plan than

+ Multiproject studies, which exam- Cal.” And surveys try to capture what is experiments but are harder to interpret
ine objects across a single team and a happening broadly over large groups and difficult to generalize. A case study
set of projects. of projects: “research-in-the-large.” can show you the effects of a technolo-

+ Replicated-project studies, which The differences among research meth- gy in a typical situation, but it cannot
examine objects across a set of teams ods is important because the experi- be generalized to every possible situa-
and a single project. mental design, analysis techniques, tion. For example, a case study may

+ Blocked subject-project studies, and conclusions they yield differ with show you that the use of object-orient-
which examine objects across a set of each type. ed languages increases the level of
teams and a set of projects. reuse on your banking-system project,

Many published software-engineer- Choosing a technique. Thus, the choice but it cannot verify that object orienta-
ing experiments and case studies refer of investigative method depends in tion always improves reuse.
to this classification scheme when part on the size and nature of the orga- On the other hand, a formal experi-
explaining how their studies were car- nization or project that you want to ment is likely to be useful for investi-
ried out, and it is very useful for under- investigate. It also depends on whether gating alternative methods of perform-
standing how the investigation was you are studying the technology in ing self-standing tasks. For example,
done; the box on pp. 54 defines some advance or after the fact. If you are try- you can perform an experiment to
other common experimental terms. ing to choose among several compet- assess the effects of several program-
However, we believe this classification ing methods or tools, you may orga- design notations, such as flowcharts or
must be extended to consider the for- nize your study as a formal experiment pseudocode, on the resulting reliability
mality of the experimental design. or a case study. If you are establishing or understandability. Here, formal

+ If the study focuses on a single a pilot project to assess the effects of a experiments are appropriate because
project, we prefer to ‘call it a case study, change, you will probably choose to do + self-standing tasks can be isolated
because it is not possible to have a for- a case study. But after the change has from the overall product-development
ma1 experiment without replication. already been implemented across a process and investigated formally

+ If the study involves many pro- large number of projects, a survey will without being unrepresentative of the
jects or a single type of project that is help you to d ocument the benefits of way they are actually performed;
replicated several times, it can be the change. + the results of self-standing tasks

IEEE SOFTWARE 53

, *

i

EXPERIMENTAL TERMIWOLORY

The most important concept in a formal experiment is the evrperimewzl
~~/&esis, which defines what the experiment is intended to test. For example, a
software experiment may investigate if design.method .A leads to better qualit)
software than design method B. The corresponding hypothesis is: Design
method A yields better quality software than design method B.

An experimental hypothesis usually asserts that different ireaments have dif-
ferent effects on experimental subjects or objects. In the context of software
experiments, a treatment is usually a method or tool. To draw any conclusions
from an experiment, there rnu~t be at least ~U‘O treatments, because hypothesis test-
ing is comparative. Thus, the result of applying one treatment is compared with
the result of applying another treatment, to determine if there is any difference.

In many experiments, one of the treatments, the ~.oo,rt~ol, is equivalent to the
status quo. The use of a new method or tool is then compared with the control.
However, software experiments have sometimes used the concept of a control
incorrectly by assuming that the alternative to using method X is not using the
method at all. However, if software staff using method X produce better prod-
ucts than software staff who do not use X, we cannot draw a valid conclusion
about the effectiveness of X. We cannot tell if the difference in product quality
is due to using X or simply due to the discipline of using a method. Moreover,
we cannot tell if “not using x” means not using a method at all, or whether the
status-quo group is actually using an informal or undocumented method of
some kind. This distinction may not be important if your project is deciding
whether or not to use X, but it is very important if another project or company
wants to apply experimental results generated by other research groups. Thus,
for experimental results to be generalized, there must be either two alternative
treatments or a well-defined control.

We measure the effects of the change in method or tool by measuring the
rarponrr vatiables, measures taken to test the hypothesis. A difference iri treat-
ments should be visible by examining differences in the values of the response
variables. The specific response variables should be derived directly from the
hypothesis. However, we often use surrogate measures instead of direct mea-
sures. For example, we may measure product reliability by counting the number
of faults detected during testing, even though reliability reflects problems
encountered by the user. Use of surrogate measures should be explicitly justi-
fied, because poor surrogate measures can invalidate the results of an experi-
me&.

Esprrimental subjects and experi~~ental o&e@ are the people or things involved
in an experiment. In s&ware experiments, experimental subjects are individuals
or groups (teams) who use a method or tool. Experimental objects may be the
programs,.algorithms, or problems to which the methods or tools are applied.

Srute vti& are measures used to describe the experimental subject,
objects, and conditions. They capture facts that are likely to affect the
response variables.

can be judged immediately, rather than
awaiting the results of a long develop-
ment process, so that the experiment
‘does not delay project completion; and

+ the results of self-standing tasks
can be assessed in isolation from other
project processes, so that small bene-
fits can be identified and distinguished
from other variables:

-’ Intvw r&s.’ The reward for a
well-designed exptiriment is results
ttfiat are easier to generalize. Formal
experiments are essential if you are

a.

-

/!

looking for results that are broadl!
applicable across many types of pro,
jects and processes. Thus, forma
experiments are important for the soft
ware-engineering research community
but they may not be necessary for :
process-improvement program tha
applies only to your particular organi
zation. For example, if you want tc
find out if using Ada will improve youl
project’s software, but you do not neec
to know if using Ada will improve
everyone’s software, then a forma
experiment may be overkill - you car

rely on a case studv.
However, even with formal experi-

ments you must be careful - formal
experiments do not generalize outside
the controlled experimental condi-
tions. For example, if you demonstrate
that Ada improves real-time software
using a formal experiment, you cannot
guarantee Ada will improve software
for data-processing systems.

A case study is usually preferable to
a formal experiment if

+ the process changes are very wide-
ranging. This means that the effect of
the change can be assessed only at a high
level because the proces change re-
presents many detailed changes
throughout the development process.
For example, if your project is chang-
ing from structured to object-oriented
methods, the repercussions could af-
fect all aspects of your processes and
products - too much for you to con-
trol and measure.

+ the effects of the change cannot
be identified immediately. For exam-
ple, if you want to know if a new de-
sign tool increases reliability, you may
have to wait until after delivery to as-
sess the effect on failures.

Case studies are a standard method
of empirical study in various “soft” sci-
ences such as sociology, medicine, and
psychology, but there is little formal
documentation available on how to
perform a proper case study; Robert
Ym’s book is a notable exception! How-
ever, Yin says that a case study should
be used when “a how or why question
is being asked about a contemporary
set of events, over which the investiga-
tor has little or no control.” For soft-
ware engineering, we need case studies
to evaluate not only how or why, but
also “which is better.” In this article we
concentrate on the “which is better”
type of case study.

Survey advantages. By combining the
advantages of case studies (applicability
to real-world projects) with those of
experiments (replication that mini-
mizes the problems of unusual results)
surveys are particularly useful. Surveys

54 JULY 1995

II

CHECKllSTFORCASE=STUDYPl.AWWlWG

This checklist, along with the seven steps to design and administer case
studies, will help you undertake a valid investigation.

can be used to ensure that process
changes are successful throughout an
organization, because they collate ex-
perience from several different pro-
jects. However, data collection can
take a great deal of time, and the re-
sults may not be available until after
many projects are completed. In med-
ical research, millions of patients may
undergo a particular treatment or use a
particular drug simultaneously, so it is
relatively easy to build up a large a-
mount of data quickly. There are fewer
such opportunities in software engi-
neering because it is more difficult to
find comparable experimental objects,
because software measures are not used
consistently, and because there is no
framework to review and collate exper-
imental results.

The most common form of survey
is based on distributing questionnaires
that elicit opinions about the benefits
of technology.’ In a different type of
study, David Card, Frank McGarry,
and Gerry Page6 analyzed project data
from the University of Maryland’s Soft-
ware Engineering Laboratory, looking
at the effects of technology on NASA’s
produc&ty and quality. Card’s group
analyzed existing data, rather than so-
liciting new information, a technique
used frequently in other disciplines.

No one type of empirical study is
better than any other; each is appropri-
ate in particular situations. But experi-
ments and surveys are traditional “hard-
science” techniques that are supported
by a rich literature describing how to
design and administer them. Thus, for
the rest of,this article, we concentrate
on case studies in order to provide
more rigor to a neglected discipline of
investigation.

CASE STUDY GUIDELINES

There are seven steps to follow in de-
signing and administering case studies:

1. Define the hypothesis.
2. Select the pilot projects.
3. Identify the method of comparison.
4. Minimize the effect of confound-

I’

Cars study context
1. What are the objectives of your case study?
2. What is the baseline against which you will compare the results of the

evaluation?
3. What are your external project constraints?

Setting the hypothesis
4. IVhat is your evaluation hypothesis?
5. How do you define, in measurable terms, what you want to evaluate (that

is, what are your response variables and how will you measure them)?

6. What are the experimental subjects and objects of the case study?
7. When in the development process or life cyle will the method be used?
8. When in the development or life cycle will the response variables be

measured?

vdiiting the hypothesis.
9. Can you collect the data you need to calculate the selected measures?
10. Can you clearly identify the effects of the treatment you want to evaluate

and isolate them from the other influences on the development?
11. Have you taken adequate procedures to ensure that the method or tool is

being correctly used?
12. If you intend to integrate the method or tool into your development

process, is the method or tool likely to have an effect other than the one
you want to investigate?

13. Which state variables or project characteristics are most important to
your case study?

14. Do you need to generalize the result to o;her projects? If so, is your pro
posed case study project typical of those projects?

15. Do you need a high level of confidence in your evaluation result? If so,
do you need to do a multiproject study?

Amlyhg the results
16. How are you going to analyze the case study results?
17. Is the tyPe of case study going to provide the level of confidence you

require?

ing factors.
5. Plan the case study.
6. Monitor the case study against

the plan.
7. Analyze and report the results.
These steps, which help ensure that

you can draw valid conclusions from
your investigation, are related to the
four criteria for research-design quality:4

+ Construct validity. Establish cor-
rect operational measures for the con-
cepts being studied.

+ Internal validity. Establish a causal
relationship and distinguish spurious
relationships.

* External validity. Establish the
domain to which a study’s findings can
be generalized.

+ Experimental reliability. Demon-
strate that the study can be repeated
with the same results.

For simplicity, we explain the steps
by assuming that you are testing a new
method on an actual software-develop-
ment project. The box on this page
provides a checklist to help you plan a
case study.

Define the hypothesis. You begin by
defining the effect you expect the
method to have. This definition must
be detailed enough to make clear what
measurements are needed to demon-
strate the effect. For example, if you
expect the new method to improve
productivity, you must state if effort

IEEE SOFTWARE 55

., -

Variable Method A

-----~ ~~ .-~-~~~~~~~~~~ ~-~ -- Productivity 0.054
(function points/hour)

Size (function points) 118 168

Team experience (years) 1 1

Project management
experience bears)

1 1

Duration (months) 10 9

Function point 2s 27

and duration will be affected and how.
Without this information, you cannot
identify, measure, and collect the data
you need to draw valid conclusions.

It is also important to define what is
not expected to happen. Formally, we
can never prove hypotheses, we can
only disprove them, so we state a null
hypothesis to say that there is no dif-
ference between treatments. However,
research is proposed and funded based
on studying the alternative hypothesis:
there is a significant difference be-
tween treatments. The formal case-
study data analysis and evaluation ad-
dresses the null hypothesis, but you
should be ready to present your find-
ings to managers and staff in terms of
the alternative.

The more clearly you define your
hypotheses, the more likely you are to
collect the right measures, test them
properly, and achieve construct validi-
ty. You must specify carefully what
really interests you. For example, pro-
cess-improvement programs often de-
fine quality as the reduction of rework
and waste, presenting quality in terms
of defect rates from the perspective of
a software developer. However, this
definition differs from the user’s point
of view, in which operational reliabili-
ty, efficiency, and usability reflect how
the user sees the software.

S&el the pilot pr*. The pilot pro-
jects you choose must be representa-
tive of the type of projects your orga-
nization or company usually under-
takes. Ideally, you can describe pro-
jects in terms of significant character-
istics, such as application domain, pro-
gramming language, design method,
and degree,ofmuse,andthenusethissta~
variable information to select projects

that are most typical. Your selection
should consider not only project type
but also the frequency with which each
type is developed. In practice, it may
be difficult to control the choice of case-
study projects. However, the extent to
which the case-study project is typical
of the organization is central to the
issue of external validity. If your case
study is atypical of the projects you
usually undertake, you will not get
very useful results.

Identify the method of comparison. Your
case study is by nature comparative,
contrasting the results of using one
method with the results of using an-
other. To avoid bias and ensure inter-
nal validity, you must identify a valid,
basis for assessing the results of, the
case study. There are three ways to
organize your study to facilitate this
comparison:

l Select a sister project with which to
compare. Here, the case study involves
two projects, one that uses the new
method and another that uses the cur-
rent method. Each project should be
typical of your organization, and both
should have similar characteristics ac-
cording to the state variables you have
chosen. The box on this page describes
variants of this design.

l Compare the results of using the
new method against a company baseline.
In this case, your company gathers
data from projects as a standard prac-
tice and makes data available on such
things as average productivity or
defect rate. You can compare the
response-variable values from your
case study, which involves a single pro-
ject using the new method, to the cor-
responding variables from previous
projects or a subset of similar projects.

,

,’

* If the method applies to indiridrlal I/ :I
components, apply it at random to some I

product components find not to others.)
Here, the case study resembles a for- ~1
ma1 experiment, because you can use i
replicated values and standard statisti-
cal methods to analvze the response ”

1’
I variables. But because the projects are

not drawn at random from the popula-
tion of all projects, this is not a true
formal experiment. This kind of study
is useful for methods that may be
applied to different degrees. For
example, if you want to know what
level of structural testing is most cost-
effective, you can measure the level of
structural testing achieved for differ-
ent modules and compare testing
effort and subsequent defect rates (or
defect-detection efficiency, if you have
seeded errors).

Minimize the effect of confounding fac-
tors. When the effect of one factor
cannot be properly distinguished from
the effect of another factor, the two
factors are confounded. For example, if
expert software engineers tested tool X
and novice software engineers tested
tool B, we cannot tell if the higher qual-
ity software produced by the experts
was the result of their experience or of
using tool A. Confounding factors can
affect the internal validity of the study.

Software case studies often have
confounding factors. The most signifi-
cant are likely to be:

+ Learning hoi~’ to use a method 01

tool as you try to assess its benefits. In
this case, the effects of learning to use
the method or tool might interfere
with the benefits of using it. For exam-
ple, a decrease in productivity caused
by the learning curve might hide pro-
ductivity improvements. To avoid this
effect, you must separate activities
aimed at learning how to use a new
technology from those aimed at evalu-
ating it.

l Using staff‘x-ho are either very
enthusiastic or z?erv skeptical about the
method or- tool. Staff morale can have a
large effect on productivity and quali-
ty. Differences in the response variable

58 JULY 1995

,
may be due to staff enthusiasm, or to
differences in enthusiasm from one
developer to another. To minimize this
effect, you must staff a case-study pro-
ject using your normal staff-allocation
method.

l Comparing different application
types. For example, the productivity of
real-time system developers is usually
lower than for data-processing systems,
so case studies should not compare
across application domains. Appro-
priate selection of case-study projects
will avoid this problem.

Sometimes it is possible to control a
confounding effect rather than elimi-
nate it. This usually involves designing
a multiproject case study in which the
different projects experience different
conditions. For example, to investigate
if the benefits of some method or tool
are influenced by application type, we
can identify a pair of case-study pro-
jects for each application type: one to
use the new method and one to use the
current method.

You can sometimes control con-
founding by measuring the confound-
ing fac$or and adjusting the results
accordingly. For example, to study how
different levels of reuse affect quality
and productivity, you may select a case-
study project in which components
(specifications, designs, or code) are
being reused, measure the amount of
each component that is reused, the
development productivity for each
component, and the defect rate. If you
suspect that, in addition to reuse, com-
ponent complexity affects productivity
and defect .rates, you can record com-
ponent complexity and use partial cor-
relation to assess the relationship
between percentage reuse, productivity,
and defect rates, adjusted for complexi-
ty.

Plan the case study. Basili, Selby, and
Hutchens emphasize’that organizations
undertaking experiments should pre-
pare an evaluation p1an.j This plan
identifies all the issues to be addressed
so that the evaluation runs smoothly,
including the training requirements,

the necessary measures, the data-col-
lection procedures, and the people
responsible for data collection and
analysis. Attention to detail contributes
to experimental reliability.

The evaluation should also have a
budget, schedule, and staffing plan
separate from those of the actual pro-
ject. A separate plan and budget is
needed to ensure that the budget for
the evaluation does not become a con-
tingency fund for the project itself!
Clear lines of authority are needed for
resolving the inevitable conflicts of
interest that occur when a develop-
ment project is used to host an evalua-
tion exercise.

Monitor the case study against the plan.
The case study’s progress and results
should be compared with the plan. In
particular, ensure that the methods or
tools under investigation are used cor-
rectly, and that any factors that would
bias the results are recorded (such as
change of staff, or a change in the pri-
ority of the case-study projects). It is
essential that you audit conformance
to the experimental plan and record
anv changes. At the end
of’the scdy, you should
write an evaluation report
including recommenda-
tions for changes in pro-
cedures.

Kruskall-Wallis method, which bases
the analysis on rank rather than on raw
data. (See the box on pp. 59 for refer-
ences to useful analysis texts.) If you
have only one value from each method
or tool being evaluated, no analysis
techniques are available; you can only
present the results as we describe next.

ANALYSIS METHODS FOR CASE STUDIES

Once you have designed your case
study and collected the data, you must
analyze it to determine what has hap-
pened and if the results are significant.
Suppose your case study involves a sis-
ter experiment with one response value
per project. For example, for each pro-
ject participating in the study, you mea-
sure productivity in function points per
staff hour using method A (the current
method) and method B (the new me-
thod). Table 1, using real data,’ shows
what you might find.

The data in Table 1 indicate that
the projects are quite similar with res-
pect to the state variables: size, team
experience, project-manager experi-

ence, duration, and func-

MAKE SURE TO
SEPARATE THE
EVALUATION
BUDGET SO THAT
IT DOES NOT GET
SPENT ON THE
PROJECT ITSELF.

Analyze and report the re-
sults. The analysis pro-
cedures you follow depend
on the number of data
items you must analyze
(that is, the number of
response-variable values
that are available). If your case study
compared treatments assigned to com-
ponents at random, you can use stand-
ard statistical methods, such as analy-
sis-of-variance and contingency tables.
Data distribution is important in choos-
ing an analysis technique. If you can-
not guarantee that the data is distrib-
uted normally (according to a bell-
shaped Gaussian curve), then you must
use nonparametric tests such as the

tion-point adjustment fac-
tor. Thus, the results sug-
gest that using method B
would improve produc-
tivity. However, to draw
that conclusion, you must
be sure that both projects
are typical of those un-
dertaken by the organiza-
tion. You must also under-
stand the factors that are
important for software
deielopment in the orga-

nization that might affect the success-
ful use of methods A and B.

In addition to looking at the quanti-
tative results, you can investigate how
typical these projects are by reviewing
the distribution of state-variable values
over all the projects undertaken by the
organization. Simple frequency plots
are useful for depicting the distribu-
tion of discrete state-variable values for
an organization. For example, Figure 1

IEEE SOFTWARE 57

Upper tail Oultien :

0 loo zoo 300
sizecr”2mpllinkr

so0 600 7al ow

Figure 1. Frequency plot showing the
distribution of discrete values, in this

Figure 2. Boxplot sbo7i’ing a distribution of‘data zlalaes over a xtide range, ia
this case the prodact size. Box plots are constructed from jiue statistics: the medi-

case the team experience for the set of an, the upper jbrrrtb (or upper gua?i?ie), the lower fowtb, the upper tail, and the
projects from which the case-study pro-
jects were selected. The plot shows that

lower tail. The upper and iouer fourths are the 75- and 25-percentile points.

it is not unuszrai for a team to have
The upper tail is constructed by multiplying the box length &v 1.5, adding the

only one year oj‘experience.
value to the upper jburtb, and truncating to the nearest actual value. The love7
tuii is constructed .$v a similar process. Values that are larger than the ripper tail
or smaller than the lover tail are called outiiers.

shows the team experience for the set
of projects from which the case-study
projects were selected. As you can see,
it is not unusual for a team to have
only one year of experience.

When you have state variables that
cover a wide range of values (such as
counts or rat&), a boxplot can help
you evaluate the distribution of data
values, particularly when data values
are skewed. Figure 2 shows a boxplot
of product-size data.

Boxplots give a simple visual display
of the distribution of a data set and
help you see how representative a sin-
gle point is. If the data set were distrib-
uted as a classic Gaussian (normal) dis-
tribution, the mean would be in the
center of the box, the tail lengths
would be approximately equal, and the
distance from the median to the upper
(or lower) tail would be approximately
three standard deviations.

It is clear from Figure 2 that the
product-size data set is skewed, and
that the two pilot projects were rela-
tively small ones (in the lower 25-per-
cent range). Thus, there is some doubt
about whether the case-study projects
were truly representative of the organi-
zation’s projects. Any productivity
improvements resulting from method
B might occur only on smaller projects.

Boxplots are also useful for con-
structing a company baseline. Figure 3
shows productivity distributions data
from 46 projects that used method A.
There are no outliers in the data set,

so the baseline for average projects is
some productivity value between the
upper (0.044) and lower (0.076)
fourths; the upper and lower tails give
the upper and lower bounds for the
organization. If you place the produc-
tivity of a case-study project using
method B on the figure as an asterisk,
it becomes clear that the case study
had unusually high productivity com-
pared to the company baseline. The
baseline can be refined further by
reconstructing it using projects that
have similar state-variable characteris-
tics to the case study.

SAMPl.E CASE STUDIES

ferent tvnes we have discussed but also

To see how software-engineering
case studies can be improved, we turn

, I

now to three studies”’ aimed at assess-
ing the benefits of Fagan inspections.“’
The studies represent not only the dif-

case studies were performed, fairly
small teams (two to eight people)

~ worked on specific timcti’onal subsys-
tems. Staff turnover was low, and peo-
ple worked on the same team for many
years. The operating system was writ-
ten in a variant of Algol 68 and sup-
ported by a special-purpose database
environment that maintained records
of literals, data types, and module
interfaces, all supported with configu-
ration control.

oostdesign fault nrofile of insuected

Case study 1. The first case study
used a single project to investigate if
Fagan &swtions would increase soft-
ware q&i+ %ithour’ resulting in a
decrease in productivity. FamtalI~, the
hypothesis stated that,rhe use of Fagan
inspections ,has no effect ~4 quality or
productivity; Forty-three oft the pro-
ject’s 73 bragrams were given detailed
design inspections; the rest were not.
Thus, iWas fiossihle to compare the

the many uroblems that can result
from imbroper case-study planning
and administration.

The first study compared different-
ly treated components, the second
used a company baseline, and the third
involved sister projects. Each study
was run for ICL’s VME development
group. VME is a large general-purpose’
operating system (approximately two
million lines of code) that has been
under continual evolution since its first
release in the early 1970s. When the

brograr& with the postdesign fault
profile of uninspectcd programs. The
response variables were fault counts
and staff effort, with t5ults related to
where t~~v;ulPi~‘discired~ the major
stage in the de+:t~p+en~.por>cess or
postrelease (for a six-month ,period).
Total project effort and inspection
effort were both recorded.

+ Design-inspectivrr sesnlts. The
case-study procedure ensured that
several productivin. and quality mea-
surements were m;~dc. The design

‘i

il

58 JULY 1995

,
I

+ W .G . C o c h r a n a n d G M . Cox, Expe r imen ta l Des igns , 2 n d ed. , J o h n W iley
& Sons , N e w York , 1957: S t a n d a r d statist ical text.

+ D.T. C a m p b e l l a n d J. S tanley, E x p e r i m e n t a l a ? ~ d Quas i - f i pe r i~ze ta l
Des ignsf i r Resea rch , R a n d McNal ly , Ch icago , 1 9 6 6 : Pract ica l indust r ia l exper i -
men ta l des ign .

inspec t ions de tec ted 5 0 pe rcen t of a l l
faul ts f o u n d for this d e v e l o p m e n t (u p
to n i n e m o n t h s pos t re lease) . T h e
inspec t ions a c c o u n t e d for 6 pe rcen t of
the total d e v e l o p m e n t costs. T h e
fau l t -detect ion ra te w a s approx ima te l y
I.2 h o u r s p e r bul t . Howeve r , a m a j o r
p rob len l w a s that t he re w a s n o bas is
for i den t ie ing if t hese resul ts w e r e
g o o d o r b a d b e c a u s e the re w a s no th -
i ng to c o m p a r e t h e m with!

+ S .L. P f leeger , “Expe r imen ta l D e s i g n a n d Ana lys is in So f twa re
E n g i n e e r i n g , ” . InnuLr of So j kwre E n g i n e e r i n g , Vo l . 1 No . 1, pp . I -20; D e s i g n
issues for so f tware exper iments .

S u r v e y antdys is
+ W .G . Coch ran , S a m p l i n g Tecbn iqz res , 2 n d ed. , J o h n W iley & Sons , N e w

York , 1963: Discuss ion of me thodo log i ca l i ssues of surveys, in par t icu lar h o w to
s a m p l e a f ini te popu la t i on so that su rvey resul ts c a n b e gene ra l i zed .

+ D. C o g g o n , G . Rose , a n d D.J.P. Barke r , E p i d e m i o l o g y fw t he Unin i t ia ted,
3 rd . ed . , Br i t ish Med ica l Journa l , L o n d o n , 1 9 9 3 : S u r v e y t echn iques u s e d in
med ica l research .

4 Pos t inspec t ion fa d rates. T a b l e 2
s h o w s the m a i n r e s p o n s e va r iab le -
t he n u m b e r of faul ts de tec ted subse -
q u e n t to c o d e p roduc t ion , as m e a s u r e d
for e a c h g r o u p of m o d u l e s for d i f ferent
defec t types. Howeve r , t he m o d u l e s
w e r e no t a l l oca ted to d e s i g n inspec t ion
randomly . In fact, t he pro jec t staff se -
lec ted for inspec t ion on ly t hose m o d -
u les they t hough t w e r e “diff icult”;

M a atdysis
+ P .G . Hoe l , in t roduc t ion to Mathemat i ca l & & ties, 3 rd . ed. , J o h n W iley &

Sons , N e w York , 1 9 6 2 .
+ S . S i ege l a n d NJ. Cas te&m, Jr., N q a r e S W fw t he B e b a v h a i

Sc iences , 2 n d ed. , McGraw-Hi l l , N e w York , 1 9 8 8 : Class ic text o n n o n p a r a m e t r i c
ana lys is techn iques .

+ D.C. Hoag l in , F. Moste l ler , a n d J.W . Tukey, Un&rs tand ingExp lo ra to t y
Da ta Analys is , J o h n W iley & Sons , N e w Yark , 1 9 8 3 ; D&Pt i ons of b o x p l o e
a n d o the r exp lo ra to ry da ta -ana lys is III& +

“easy” m o d u l e s w e r e no t g i ven d e s i g n j ~

U S E F U L A N A L Y S IS T E X T S

mspect lons .
T h e l owe r ovCra l l -e r ro r ra te ind i -

ca tes that the un inspec ted p r o g r a m s
w e r e s impler . Bu t the i nspec ted p r o - i
g r a m s r e v e a l e d the i r faul ts ear l ie r in the ~
d e v e l o p m e n t p rocess t h a n the un in - 1
spec ted p rog rams . B y the t ime they)

F o ~ ~ h s pe r 1 0 0 l ines of code 1 ’. ,
C o d e inspected / I

(13 ,334 l ines of code)
C o d e not inspected

(8 ,852 l ines of code) i i ,

r e a c h e d system test, i nspec ted p r o g r a m s
a p p e a r e d to h a v e h i g h e r qual i ty t h a n
un inspec ted p rog rams , a s i tuat ion c o n -
f i rmed by the pos t re lease faul t rates.

* Pro l t iems r i tb r d s e stvdy 1. Th is
p i lot p ro jec t w a s c h o s e n b e c a u s e the
t eam w a n t e d to par t ic ipate. T h e r e w a s
n o fo rma l se lec t ion to e n s u r e that the
pi lot w a s rep resen ta t i ve of typical ICL
pro jects . Fu r the rmore , this p red ispos i -
t ion to b e he lp fu l p r o b a b l y b i a s e d the
resul ts in favor of the inspec t ion tech-
n ique . Bu t the m a j o r p r o b l e m wi th
this s tudy w a s the n o n r a n d o m se lec-
t ion of m o d u l e s that w e r e sub jec ted to
de ta i l ed d e s i g n inspect ions. T h e d e v e -
l opmen t staff m e m b e r s themse lves d e -
c i ded wh i ch m o d u l e s w o u l d b e g i ven
de ta i l ed inspect ions, a n d they se lec ted
on ly t hose that w e r e diff icult. Th is w a s
a sens ib le a p p r o a c h for the pro ject , bu t
it h a d a d isas t rous effect o n the eva lua -
t ion’s val idi ty. H a d the a l loca t ion b e e n
r a n d o m , a n ana lys is -o f -var iance o n the
pos tdes ign qual i ty of e a c h m o d u l e

C o d e r e a d i n g 0 . 9 7 0 . 4 5

Uni t test 0 . 8 2 0 .0x

Sys tem test 0 . 2 0 0 . 3 6

Cus tomer 0.012 0 .04

~ Overa l l 2.0 1 . 5 4 I I

F i gu re 3. Boxp lo t u s e d to const lzrct a c o m p a n y base l ine . In this i rue, 4 6 pro jec ts
us i ng m e t h o d A a r e c o m p a r e d wi th o n e pro jec t us i ng nrethoc l Il. T h e boxp lo t
s h o w s that this s ing le case s tudy b a d zznzzszzal iy h i g h p rodzh i’i< v ~ ~ o l u p a r e d to the ,m
c o m p a n y base l ine .

T .~

‘I E E E S O F T W A R E 5 9

(measured in defects per hundred lines
of code) would have revealed if the
inspections made a significant differ-
ence. But because difficult modules
exhibit more defects than simple mod-
ules even after design reviews, this
analysis was not valid. Thus the only
useful result is the overall defect rate
for each major postdesign activity.
This problem could have been avoided
if the case study had been planned and
controlled as an activity in its own
right, rather than as an adjunct to the
development effort.

Other problems resulted from this
lack of planning. For example, several
other response variables were collected
but could not be properly interpreted
because there was no basis of compari-
son. Thus, it was impossible to tell if
inspections decreased productivity.

Case study 2. The second case study
looked at whether Fagan inspections
would increase software quality through
a cost-effective detection of defects. A
single project was used and compared
with a baseline made up of all other
concufrent projects. Thus, it was possi-

REPLICATED PRODUCT DESIGN

ble to compare the postdesign fault pro-
file of the pilot project with the postde-
sign fault profile of other projects.

The response variables were fault
counts and staff effort. Here, faults
were again related to each major stage
in the development process. In addi-
tion, faults were classified as design or
coding faults. Total project effort, effort
for conventional testing, and inspection
effort were recorded. As before, the
pilot project was self-selected because
the development team was interested in
the inspection technique.

+ Design-inspection results. This sec-
ond case study, involving the production
of a new subsystem of approximately
39,000 lines of code, gave results broad-
ly similar to the first. However, because
this case study collected data on testing
and inspection effort, it was possible to
assess the relative costs of fault detec-
tion and correction. The inspections
detected 41 percent of in-house faults
at a cost of 9 percent of the project-
development effort. The cost-per-fault
was approximately 1.6 hours, with an
average cost-per-fault detected postde-
sign of 8.5 hours. This result suggests

It is sometimes possible to develop a product a second time using a different
development method. This is called a replicated pladact design. To use it:

1. Replicate an existing product using the new method or tool.
2. Measure the response variables on both versions of the product.
3. Compare the two sets of response variables.
The advantage of this design is that some of the differences between the sis-

ter projects is eliminated because they both produce the same project.
However, usually only one of the products is produced under normal commer-
cial conditions.

This method is often used when a research group wants to demonstrate the
superiority of a new method compared with current development methods.
However, if the research group also undertakes the replication project, the
results will be biased because the research group will usually have more experi-
ence with the new method than would the development staff and are more
motivated to see itsucceed.

These problems can be overcome if the research group sponsors the devel-
opment group to undertake both projects to commercial standards, and the
product that performs best in final system test (or acceptance test) is the one
released to customers.

that inspections are a very cost-effec-
tive fault-detection method.

+ Postdesign fault profile. When the
fault profile of the pilot project postde-
sign was compared with the fault pro-
file found for other projects during the
same time, it appeared that postdesign
faults were again being found earlier in
the development process, as Table 3
shows. However, the baseline does not
include any assessment of variability.

+ Fault types. Table 4 shows the
types of fault found postdesign, indicat-
ing that inspections reduced the num-
ber of design faults but not the number
of interface faults (which can be regard-
ed as a kind of design fault). These find-
ings were reviewed with the develop-
ment group, which pointed out that the
faults were found in code that inter-
faced to a subsystem developed by team
members who refused to attend inspec-
tions. Thus, they reasoned, the results
actually supported the need for inspec-
tions. This result emphasizes the im-
portance of monitoring the pilot pro-
ject for unexpected effects. If the inter-
face problems had not been traced back
to the nonparticipating group, the re-
sults might have been misinterpreted.

+ Problems with case study 2. As in
the first case study, the pilot project
was not chosen using any formal se-
lection process. However, the more
significant problems occurred at the
analysis stage. The construction of the
baseline would have been greatly im-
proved by using a boxplot to indicate
the extent of natural variability. In some
circumstances, it might have been bet-
ter to use a direct measure of faults
per hundred lines of code during sys-
tem test as the response measure
rather than percentages. However, in
this particular environment, there was
a considerable variation in basic fault
rates from different types of project.
The pilot project was a new utility pro-
ject and was expected to have lower
fault rates than some of the more com-
plex enhancement projects; a baseline
based on faults per hundred lines of
code would have to have been derived
from a very small selection of similar

JULY 1995

lest Method Pertentoge Faults
Pilot Project All Ptojetts

projects. A baseline based on internal Code reading 57.5 37.6
distribution of faults was valid for all
projects because they all use the same Cnit test 38.4 SL.’

development process. ’ System test 4.1 11.2
Finally, it is important to note that !

the case study used a surrogate mea-
sure of quality. Actual quality depends
on the defects found during use, but
the analysis was based on the defects
found during in-house testing. Thus
the conclusions may be misleading.

1 F&Type Percentage Faults
1 Pilot Project All Projects
I

Case study 3. The third investigation ~ Interface 5.8 2.1

was not planned as a case study. Rather, 1
it occurred naturally as two parts of the i Design 8.1 13.3

same project were developed in differ- / Code 81.0 70.3
ent ways. At first, the primary part of /
the project was planned; however, later ! Orher 5.1 14.2

a large additional functional develop-
ment was required. The same team
produced both subprojects, and testing and number of modules. In addition, hat is the next step?
on each was done by the same staff code from the subproject done without W Software-engineering experi-
member. Although these subprojects design inspections was of poor quality mentation is a necessary adjunct to
were not selected to be part of a case (in terms of fault rates) and was more process improvement, and objective,
study, they were typical of the commer- expensive than the inspected code. meaningful case studies can help us
cial projects undertaken by the group. The case study is convincing be- understand our processes and control

Because the project manager want- cause the difference in results is so dra- the improvements. Many case studies
ed to get the second part of the project matic. In addition, many of the typical are performed, but few are done well.
completed as quickly as possible, he problems with case-study control and The case-study process is itself in need
did nor permit any detailed design in- variation were absent because the same of improvement.
spections. His unstated hypothesis was, personnel were involved, the same Good case studies involve:
therefore, that detailed design inspec- development environment was used, + Specifying the hypothesis under
tions cause delays to product develop- and the applications were related. test.
ment and do not have a major influ- + Problem with case &y 3. Clear- + Using state variables for project
ence on quality. In effect, what result- ly, the study was not planned in ad- selection and data analysis.
ed was a case study based on sister sub- Vance. Nevertheless, it conformed + Establishing a basis for compar-
projects, with response variables de- quite well to case-study requirements isons.
fined as time to complete production, and resulted in sufficient information + Planning case studies properly.
effort, and fault rates. to reject the hypothesis that inspec- * Using appropriate presentation

+ Results. The results, shown in tions increase time to market and do and analysis techniques to assess the
Table 5, indicate that trading quality not affect quality. However, this study results.
for productivity simply did not work, is not completely without problems. We must stop and assess each tool
and the hypothesis can be firmly re- The quality measure was based on and technology before we jump on a
jetted. The subproject without inspec- prerelease rather than postrelease de- promotional bandwagon. Even when
tions took far longer to produce than fects, again reflecting a developer’s formal experiments are not available or
the much larger “high-quality” sub- rather than a user’s view of software possible, we can perform case studies to
project. Additional time and effort quality. A more subtle problem in- determine if the tool or technology is
were needed to test the code that had volves whether or not the two parts of helpful on our typical projects. That is,
not been subject to design inspections. the project are really comparable. Ac- we need not wait until a method is
This diminished productivity is clear, cording to the subjective opinion of proven effective in every environment;
even though the state variables show the staff involved, the two subprojects we can run careful tests to see if the
that the subproject without inspec- were similar in complexity; however, method is useful in our particular envi-
tions was much smaller than the other there were no objective measures to ronments.
subproject in terms of absolute size ~ confirm this claim. But such investigation requires the

IEEE SOFTWARE 61

, .
investment of time and effort, not only
in planning and carrying out the case
studies, but also in analyzing and
reporting the results. The findings of
academic experiments are often widely
publicized, as universities encourage
their staff to publish and disseminate
results. But the results of industrial case
studies, less often made available to the
public, are no less relevant to practi-

tioners who are seeking new or im-
proved ways of developing and main-
taining software.

The results of case studies are con-
text-dependent, but we can be more
confident that a method is generally
beneficial if encouraging results are
reported by a number of different orga-
nizations under a number of different
conditions. We can also better under-

ACKNOWLEDGMENTS
This article is based on research undertaken as part of the Desmet project, a collabo-

rative project funded by the UK Deparnnent of Trade and Industry and the Science and
Engineering Research Council. The aim of the project was to develop and validate a
methodology for evaluating software-engineering methods and tools. We are also indebt-
ed to the referees, who provided valuable suggestions that we have incorporated into the
final version.

REFERENCES
1. D.R. Lindstrom, “Five Ways to Destroy a Development Project,” IEEE So$mare, Sept. 1993, pp.

55-58.

2. N. Fenton, S.L. Pfleeger, and R.L. Glass, “Science and Substance: A Challenge to Software Engi-
neers,” IEEE Sofnare, July 1994, pp. 86-95.

3. V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in Software Engineering,” IEEE
Tranmtimr Software Eng., July 1986, pp. 758-773.

4. R.K. Yin, Case Study Research Design and Methods, Sage Publications, Beverley Hills, Calif., 1984.

5. C.R. Necco, R.N.W. Tsa, and K.W. Hoogeston, “Current Usage of CASE Software,“~. Systems
,v&mzgement, May 1989.

6. D.N. Card, F.M. McGarry, and G.T. Page, “Evaluating Software-Engineering Technologies,”
ZEEE Tramactiom S@uare Eng., July 1987, pp. 845.851.

7. J.-M. Desharnais, Analyze Statirtique de la Productivitie des Pnject de Developpment en Infonnatique a
Partir de la Technique der Point des Fonction, master’s thesis, University of Quebec, Montreal, 1989;
in French.

8. B.A. Kitchenham, A.P. Kitchenham, and J.P. Fellows, “The Effects of Inspections on Software
Quality and Productivity,” ZCL Technical3., May 1986, pp. 112-122.

9. B.A. Kitchenham, “Management Metrics,” S&are Reliability Achievement and Asmment,
B. Lit&wood, ed., Blackwell Scientific Publications, Barking, UK, 1987,~~. 113.124.

10. M.E. Fagan, “Design and Code Inspections to Reduce Errors in Program Development,”
IBMSystmJ., Mar. 1976, pp. 219-248.

stand the limits of methods and tools if
we get conflicting reports from different
case studies.

We encourage you to assess the work
of others, not only in terms of the issues
raised here, but also in terms of whether
it is applicable to your projects. And we
encourage you to publish your case-
study results, to the benefit of the gener-
al software-engineering community. +

Lesley Pickard is an inde-
pendent consultant. In the
last 10 years she has been
involved in researching the
use of statistical techniques
and software metrics for
the monitoring and control
of software development.
Much of her work has been
part of European collabo-
&ive projec&. She has

written several technical papers.
Pickard received a BSc in applied mathematics

from Abertay University, Scotland, and a PhD in
computer science from the City University, London.
She is a fellow of the Royal StatIstical Society.

Barbara Kitchenham is a software-engineering consultant at Britain’s National
Computing Centre. Her interests are software metrics and their application to
project management, quality control, and evaluation of software technologies.
She was a programmer for [CL’s Operating System Division before becoming
involved with a number of UK and European research projects on software qual-
ity, software-cost estimation, and evaluation methodologies for software technol-
ogy. She has written more than 30 papers on software metrics.

Kitchenham received a PbD from the University of Leeds. She is an associate
fellow of the Insitute of Mathematics and Its Applications and a fellow of the
Royal Statistical Society.

pal scientist at both the
Contel Technology Center and Mitre. She is cur-
rently a visiting professorial research fellow at the
Centre for Software Reliability, investigating how
software-engineering techniques affect software
quality. She has written two software-engineering
texm and several dozen articles.

Pfleeger received a PbD in informanon technol-
ogy from George iMason University. She is an
adviser to IEEE Sprctrum.

Address questions about this article t” Kitchenham at National Computing Centre, Oxford House, Oxford Rd., Manchester Ml 7ED, UK; barbarakitchenham
@ “CC.C”.uk.

62 JULY 1995

