& Case studies belp industry
evaluate the benefits of
methods and tools and provide

a cost-effective way to ensure
that process changes provide

the desired results. However,
unlike formal experiments and
surveys, case studies do not have
a well-understood theoretical
basis. This article provides
guidelines for organizing and
analyzing case studies so that

_they produce meaningful results.

Case Studies for
}\/fnf]r\nf‘] “)1"\/‘1

AVILCULIUNL Al 1\

Tool Evaluation

BARBARA KITCHENHAM and LESLEY PICKARD,

National Computing Centre

SHARI LAWRENCE PFLEEGER, City University

ou have read about a
new technique or tool in IEEE Software
or elsewhere, and you are considering
its use on your project. If it worked for
someone else, how do you know it will
work for you? The last decade has seen
explosive growth in the number of
software-engineering methods and
tools, each one offering to improve
some characteristic of software, its
development, or its maintenance. With
an increasing awareness of the compet-
itive advantage to be gained from con-
tinuing process improvement, we all
seek methods and tools that will make
us more productive and improve the
quality of our software. But disaster
can result from introducing inappro-
priate technology to a software-pro-
duction department.! How do we
ensure that our changes lead to posi-

tive improvement?

Norman Fenton, Shari Lawrence
Pfleeger, and Robert Glass suggest
that rigorous experimentation is need-
ed to evaluate new technologies and
their effects on our organizations,
processes, and products.? Such scientif-
ic investigation is essential to under-
standing our processes and products,
to increasing our customers’ confi-
dence in our products, and to making
software engineering'a science rather
than an art.

Suppose you have decided to evalu-
ate a technology. How do you pro-
ceed? Do you do a survey? An experi-
ment? A case study? In this article, we
discuss the conditions under which
each type of investigation is appropri-
ate. Then, because good case studies
are as rare as they are powerful and

52

0740-7459,/94/$04.00 © 1994 IEEE

JULY 1985

informative, we focus on how to do a
proper and effective case study.
Although they cannot achieve the sci-
entific rigor of formal experiments,
case studies can provide sufficient
information to help you judge if specif-
ic technologies will benefit your own
organization or project. Even when
you cannot do a case study of your
own, the principles of good case-study
analysis will help you determine if the
case-study results you read about are
applicable to your situation.

EMPIRICAL INVESTIGATION METHODS

In their landmark paper, Victor Basili,
Richard Selby, and David Hutchens
described a framework for quantitative
software-engineering studies.’ They
defined software-engineering experi-
ments in terms of a two-dimensional
classification scheme:

o Single-project studies, which exam-
ine objects across a single team and a
single project.

& Multiproject studies, which exam-
ine objgcts across a single team and a
set of projects.

¢ Replicated-project studies, which
examine objects across a set of teams
and a single project.

¢ Blocked subject-project studies,
which examine objects across a set of
teams and a set of projects.

Many published software-engineer-
ing experiments and case studies refer
to this classification scheme when
explaining how their studies were car-
ried out, and it is very useful for under-
standing how the investigation was
done; the box on pp. 54 defines some
other common experimental terms.
However, we believe this classification
must be extended to consider the for-
mality of the experimental design.

¢ If the study focuses on a single
project, we prefer to call it a case study,
because it is not possible to have a for-
mal experiment without replication.

" o If the study involves many pro-
jects or a single type of project that is
replicated several times, it can be

either a case study or a formal experi-
ment. A formal experiment requires
appropriate levels of replication, and
experimental subjects and objects that
are chosen at random within the con-
straints of an experimental design.

¢ If the study looks at many teams
and many projects, it
may be a formal experi-
ment or a survey, de-
pending on whether the
selection of teams and
projects was planned or
post hoc. Thus, any
investigation can be
considered a case study,
formal experiment, or
survey.

However, the differ-
ences among these
methods are also reflected in their
scale. By their nature, since formal
experiments must be carefully con-
trolled, they are often small in scale:
“research-in-the-small.” Case studies
usually look at what is happening on a
typical project: “research-in-the-typi-
cal.” And surveys try to capture what is
happening broadly over large groups
of projects: “research-in-the-large.”
The differences among research meth-
ods is important because the experi-
mental design, analysis techniques,
and conclusions they yield differ with
each type.

Choosing a technique. Thus, the choice
of investigative method depends in
part on the size and nature of the orga-
nization or project that you want to
investigate. It also depends on whether
you are studying the technology in
advance or after the fact. If you are try-
ing to choose among several compet-
ing methods or tools, you may orga-
nize your study as a formal experiment
or a case study. If you are establishing
a pilot project to assess the effects of a
change, you will probably choose to do
a case study. But after the change has
already been implemented across a
large number of projects, a survey will
help you to document the benefits of
the change.

DIFFERENT METHODS
YIELD DIFFERENT
ENVIRONMENTAL
DESIGNS, ANALYSIS
TECHNIQUES, AND
CONCLUSIONS.

For all three investigative tech-
niques, you must understand which
variables you can control and how to
measure the results. Formal experi-
ments are sometimes difficult to con-
duct when the degree of control is lim-
ited. In order to impose full control,
formal experiments are
often small, which is a
problem when you try
to increase the scale
from the laboratory to a
real project. Thus, case
studies are particularly
important for industrial
evaluation of software-
engineering methods
and tools because they
can avoid scale-up prob-
lems. Whereas formal
experiments sample over the variables
that are being manipulated (so that you
have a case representing each possible
situation), case studies sample from the
variables (representing the typical situ-
ation).

Case studies are easier to plan than
experiments but are harder to interpret
and difficult to generalize. A case study
can show you the effects of a technolo-
gy in a typical situation, but it cannot
be generalized to every possible situa-
tion. For example, a case study may
show you that the use of object-orient-
ed languages increases the level of
reuse on your banking-system project,
but it cannot verify that object orienta-
tion always improves reuse.

On the other hand, a formal experi-
ment is likely to be useful for invest-
gating alternatve methods of perform-
ing self-standing tasks. For example,
you can perform an experiment to
assess the effects of several program-
design notations, such as flowcharts or
pseudocode, on the resulting reliability
or understandability. Here, formal
experiments are appropriate because

¢ self-standing tasks can be isolated
from the overall product-development
process and investigated formally
without being unrepresentative of the
way they are actually performed;

¢ the results of self-standing tasks

IEEE SOFTWARE

53

EXPERIMENTAL TERMINOLOGY

The most important concept in a formal experiment is the experimental
bypothess, which defines what the experiment is intended to test. For example, a
software experiment may investigate if design method A leads to better quality
software than design method B. The corresponding hypothesis is: Design
method A yields better quality software than design method B.

An experimental hypothesis usually asserts that different trearments have dif-
ferent effects on experimental subjects or objects. In the context of software
experiments, a treatment is usually a method or tool. To draw any conclusions
from an experiment, there must be at least two treatments, because hypothesis test-
ing is comparative. Thus, the result of applying one treatment is compared with
the result of applying another treatment, to determine if there is any difference.

In many experiments, one of the treatments, the control, is equivalent to the
status quo. The use of a new method or tool is then compared with the control.
However, software experiments have sometimes used the concept of a control
incorrectly by assuming that the alternative to using method X is not using the
method at all. However, if software staff using method X produce better prod-
ucts than software staff who do not use X, we cannot draw a valid conclusion
about the effectiveness of X. We cannot tell if the difference in product quality
is due to using X or simply due to the discipline of using a method. Moreover,
we cannot tell if “not using X” means not using a method at all, or whether the
status-quo group is actually using an informal or undocumented method of
some kind. This distinction may not be important if your project is deciding
whether or not to use X, but it is very important if another project or company
wants to apply experimental results generated by other research groups. Thus,
for experimental results to be generalized, there must be either two alternative

treatments or a well-defined control.

.
ment.

response variables.

We measure the effects of the change in method or tool by measuring the

| respomse variables, measures taken to test the hypothesis. A difference in treat-
ments should be visible by examining differences in the values of the response
variables. The specific response variables should be derived directly from the
hypothesis. However, we often use surrogate measures instead of direct mea-
sures. For example, we may measure product reliability by counting the number
of faults detected during testing, even though reliability reflects problems
encountered by the user. Use of surrogate measures should be explicitly justi-
fied, because poor surrogate measures can invalidate the results of an experi-

Experimental subjects and experimental objects are the people or things involved
in an experiment. In software experiments, experimental subjects are individuals
or groups (teams) who use a method or tool. Experimental objects may be the
programs, algorithms, or problems to which the methods or tools are applied.

State variables are measures used to describe the experimental subject,
objects, and conditions. They capture facts that are llkely to affect the

can be judged immediately, rather than
awaiting the results of a long develop-
ment process, so that the experiment
does not delay project completion; and

¢ the results of self-standing tasks
can be assessed in isolation from other
project processes, so that small bene-
fits can be identified and distinguished
from other variables.

Interprefing results. The reward for a

well-designed expeériment is results

that are easier to generalize. Formal

experiments are essential if you are

‘e

looking for results that are broadly
applicable across many types of pro-
jects and processes. Thus, formal
experiments are important for the soft-
ware-engineering research community,
but they may not be necessary for a
process-improvement program that
applies only to your particular organi-
zation. For example, if you want to
find out if using Ada will improve your
project’s software, but you do not need
to know if using Ada will improve
everyone’s software, then a formal
experiment may be overkill — you can

| rely on a case study.

' However, even with formal experi-

. ments you must be careful — formal

* experiments do not generalize outside

the controlled experimental condi-

tions. For example, if you demonstrate
that Ada improves real-time software
using a formal experiment, you cannot
guarantee Ada will improve software
for data-processing systems.

A case study is usually preferable to

. a formal experiment if

¢ the process changes are very wide-

ranging. This means that the effect of
the change can be assessed only at a high
level because the proces change re-
presents many detailed changes
throughout the development process.
For example, if your project is chang-
ing from structured to object-oriented
methods, the repercussions could af-
fect all aspects of your processes and
products — too much for you to con-
trol and measure.

i - the effects of the change cannot
be identfied immediately. For exam-
ple, if you want to know if a new de-
sign tool increases reliability, you may
have to wait until after delivery to as-
sess the effect on failures.

Case studies are a standard method
of empirical study in various “soft” sci-
ences such as sociology, medicine, and

. psychology, but there is little formal
" documentation available on how to
perform a proper case study; Robert
Yin’s book is a notable exception* How-
ever, Yin says that a case study should
be used when “a how or why question
is being asked about a contemporary
set of events, over which the investiga-
tor has little or no control.” For soft-
ware engineering, we need case studies
to evaluate not only how or why, but
also “which is better.” In this article we
concentrate on the “which is better”
type of case study.

Survey advantages. By combining the
advantages of case studies (applicability
to real-world projects) with those of
experiments (replication that mini-
mizes the problems of unusual results)
surveys are particularly useful. Surveys

54

JULY 1885

can be used to ensure that process
changes are successful throughout an
organization, because they collate ex-
perience from several different pro-
jects. However, data collection can
take a great deal of time, and the re-
sults may not be available until after
many projects are completed. In med-
ical research, millions of patients may
undergo a particular treatment or use a
particular drug simultaneously, so it is
relatively easy to build up a large a-
mount of data quickly. There are fewer
such opportunities in software engi-
neering because it is more difficult to
find comparable experimental objects,
because software measures are not used
consistently, and because there is no
framework to review and collate exper-
imental results.

The most common form of survey
is based on distributing questionnaires
that elicit opinions abour the benefits
of technology.’ In a different type of
study, David Card, Frank McGarry,
and Gerry Page® analyzed project data
from the University of Maryland’s Soft-
ware Engineering Laboratory, looking
at the effects of technology on NASA’s
productivity and quality. Card’s group
analyzed existing data, rather than so-
liciting new information, a technique
used frequently in other disciplines.

No one type of empirical study is
better than any other; each is appropri-
ate in particular situations. But experi-
ments and surveys are traditional “hard-
science” techniques that are supported
by a rich literature describing how to
design and administer them. Thus, for
the rest of this article, we concentrate
on case studies in order to provide
more rigor to a neglected discipline of
investigation.

CASE STUDY GUIDELINES

There are seven steps to follow in de-
signing and administering case studies:
1. Define the hypothesis.
+ 2. Select the pilot projects.
3.Idendfy the method of comparison.
4. Minimize the effect of confound-

-

CHECKLIST FOR CASE-STUDY PLANNING

This checklist, along with the seven steps to design and administer case
studies, will help you undertake a valid investigation.

Case study context .

1. What are the objectives of your case study?
2. What is the baseline against which you will compare the results of the

evaluation?

3. What are your external project constraints?

Setting the hypothesis

4. What is your evaluation hypothesis?
5. How do you define, in measurable terms, what you want to evaluate (that
is, what are your response variables and how will you measure them)?

| Plaming

6. What are the experimental subjects and objects of the case study?
7. When in the development process or life cyle will the method be used?

measured?

Validating the hypothesis.
9

8. When in the development or life cycle will the response variables be

. Can you collect the data you need to calculate the selected measures?
10. Can you clearly identify the effects of the treatment you want to evaluate
and isolate them from the other influences on the development?

11. Have you taken adequate procedures to ensure that the method or tool is

being correctly used?

12. If you intend to integrate the method or tool into your development

you want to investigate?

your case study?

Analyzing the results ,

require?

process, is the method or tool likely to have an effect other than the one
13. Which state variables or project characteristics are most important to

14. Do you need to generalize the result to other projects? If so, is your pro
posed case study project typical of those projects?

15. Do you need a high level of confidence in your evaluation result? If so,
do you need to do a multiproject study? '

16. How are you going to analyze the case study results?
17. Is the type of case study going to provide the level of confidence you

ing factors.

5. Plan the case study.

6. Monitor the case study against
the plan.

7. Analyze and report the results.

These steps, which help ensure that
you can draw valid conclusions from
your investigation, are related to the
four criteria for research-design quality:*

o Construct validity. Establish cor-
rect operational measures for the con-
cepts being studied.

o Internal validity. Establish a causal
relationship and distinguish spurious
relationships.

o External validity. Establish the
domain to which a study’s findings can
be generalized.

¢ Experimental reliability. Demon-
strate that the study can be repeated
with the same results.

For simplicity, we explain the steps
by assuming that you are testing a new
method on an actual software-develop-
ment project. The box on this page
provides a checklist to help you plan a
case study.

Define the hypothesis. You begin by
defining the effect you expect the
method to have. This definition must
be detailed enough to make clear what
measurements are needed to demon-
strate the effect. For example, if you
expect the new method to improve
productivity, you must state if effort

fEEE SOFTWARE

55

TABLE 1

COMPARISON OF PRODUCTIVITY MEASURES

| Vorioble

Productivity
(function points/hour)

Size (function points)
Team experience (years)

Project management
experience (years)

Duration (months)

Function point

_Method A Method B ‘
0.054 0.237 ‘
118 168
1 1
1 1
10 9
25 27

and duration will be affected and how. |
Without this information, you cannot |
identify, measure, and collect the data
you need to draw valid conclusions.

Tt is also important to define what is
not expected to happen. Formally, we
can never prove hypotheses, we can
only disprove them, so we state a null
hypothesis to say that there is no dif-
ference between treatments. However,
research is proposed and funded based
on studying the alternative hypothesis:
there is a significant difference be-
tween treatments. The formal case-
study data andlysis and evaluation ad-
dresses the null hypothesis, but you
should be ready to present your find-
ings to managers and staff in terms of
the alternative.

The more clearly you define your
hypotheses, the more likely you are to
collect the right measures, test them
properly, and achieve construct validi-
ty. You must specify carefully what
really interests you. For example, pro-
cess-improvement programs often de-
fine quality as the reduction of rework
and waste, presenting quality in terms
of defect rates from the perspective of
a software developer. However, this
definition differs from the user’s point
of view, in which operational reliabili-
ty, efficiency, and usability reflect how
the user sees the software.

Seloct the pilot projects. The pilot pro-
jects you choose must be representa-
tive of the type of projects your orga-
nization or company usually under-
takes. Ideally, you can describe pro-
jects in terms of significant character-
istics, such as application domain, pro-
gramming. language, design method,
and degree of reuse, and then use this state-

variable information to select projects

that are most typical. Your selection
should consider not only project type
but also the frequency with which each
type is developed. In practice, it may
be difficult to control the choice of case-
study projects. However, the extent to
which the case-study project is typical
of the organization is central to the
issue of external validity. If your case
study is atypical of the projects you
usually undertake, you will not get
very useful results.

Identify the method of comparison. Your
case study is by nature comparative,
contrasting the results of using one
method with the results of using an-
other. To avoid bias and ensure inter-

nal validity, you must identify a valid

basis for assessing the results of the
case study. There are three ways to
organize your study to facilitate this
comparison:

& Select a sister project with which to

compare. Here, the case study involves

two projects, one that uses the new
method and another that uses the cur-
rent method. Each project should be
typical of your organization, and both
should have similar characteristics ac-
cording to the state variables you have
chosen. The box on this page describes
variants of this design.

o Compare the results of using the
new method against a company baseline.
In this case, your company gathers
data from projects as a standard prac-
tice and makes data available on such
things as average productivity or
defect rate. You can compare the
response-variable values from your
case study, which involves a single pro-
ject using the new method, to the cor-
responding variables from previous
projects or a subset of similar projects.

o If the method applies to individual
components, apply it at random to some
product components and not to others.
Here, the case study resembles a for-
mal experiment, because you can use
replicated values and standard statisti-
cal methods to analyze the response

| variables. But because the projects are

not drawn at random from the popula-
tion of all projects, this is not a true
formal experiment. This kind of study
is useful for methods that may be
applied to different degrees. For
example, if you want to know what
level of structural testing is most cost-
effective, you can measure the level of
structural testing achieved for differ-
ent modules and compare testing
effort and subsequent defect rates (or
defect-detection efficiency, if you have
seeded errors).

Minimize the effect of confounding fac-
tors. When the effect of one factor
cannot be properly distinguished from
the effect of another factor, the two
factors are confounded. For example, if
expert software engineers tested tool A
and novice software engineers tested
tool B, we cannot tell if the higher qual-
ity software produced by the experts
was the result of their experience or of
using tool A. Confounding factors can
affect the internal validity of the study.

Software case studies often have
confounding factors. The most signifi-
cant are likely to be:

¢ Learning how to use a method or
tool as you try to assess its benefirs. In
this case, the effects of learning to use
the method or tool might interfere

| with the benefits of using it. For exam-

ple, a decrease in productivity caused
by the learning curve might hide pro-
ductivity improvements. To avoid this
effect, vou must separate activities
aimed at learning how to use a new
technology from those aimed at evalu-
ating it.

¢ Using staff who are either very
enthusiastic or very skeptical about the
method or tool. Staff morale can have a
large effect on productivity and quali-

© ty. Differences in the response variable

JULY 199§

may be due to staff enthusiasm, or to
differences in enthusiasm from one
developer to another. To minimize this
effect, you must staff a case-study pro-
ject using your normal staff-allocation
method.

¢ Comparing different application
types. For example, the productivity of
real-time system developers is usually
lower than for data-processing systems,
so case studies should not compare
across application domains. Appro-
priate selection of case-study projects
will avoid this problem.

Sometimes it is possible to control a
confounding effect rather than elimi-
nate it. This usually involves designing
a multiproject case study in which the
different projects experience different
conditions. For example, to investigate
if the benefits of some method or tool
are influenced by application type, we
can identify a pair of case-study pro-
jects for each application type: one to
use the new method and one to use the
current method.

You can sometimes control con-
founding by measuring the confound-
ing facgor and adjusting the results
accordingly. For example, to study how
different levels of reuse affect quality
and productivity, you may select a case-
study project in which components
(specifications, designs, or code) are
being reused, measure the amount of
each component that is reused, the
development productivity for each
component, and the defect rate. If you
suspect that, in addition to reuse, com-
ponent complexity affects productivity
and defect rates, you can record com-
ponent complexity and use partial cor-
relation to assess the relationship
between percentage reuse, productivity,
and defect rates, adjusted for complexi-

ty.

Plan the case study. Basili, Selby, and
Hutchens emphasize that organizations
undertaking experiments should pre-
pare an evaluation plan.’ This plan
identifies all the issues to be addressed
so that the evaluation runs smoothly,
including the training requirements,

the necessary measures, the data-col-
lection procedures, and the people
responsible for data collection and
analysis. Attentdon to detail contributes
to experimental reliability.

The evaluation should also have a
budget, schedule, and staffing plan
separate from those of the actual pro-
ject. A separate plan and budget is
needed to ensure that the budget for
the evaluation does not become a con-
tingency fund for the project itself!
Clear lines of authority are needed for
resolving the inevitable conflicts of
interest that occur when a develop-
ment project is used to host an evalua-
tion exercise.

Monitor the case study against the plan.
The case study’s progress and results
should be compared with the plan. In
particular, ensure that the methods or
tools under investigation are used cor-
rectly, and that any factors that would
bias the results are recorded (such as
change of staff, or a change in the pri-
ority of the case-study projects). It is
essential that you audit conformance
to the experimental plan and record
any changes. At the end
of the study, you should
write an evaluation report
including recommenda-
tions for changes in pro-
cedures.

Analyze and report the re-
svlts. The analysis pro-
cedures you follow depend
on the number of data
items you must analyze
(that is, the number of
response-variable values
that are available). If your case study
compared treatments assigned to com-
ponents at random, you can use stand-
ard statistical methods, such as analy-
sis-of-variance and contingency tables.
Data distribution is important in choos-
ing an analysis technique. If you can-
not guarantee that the data is distrib-
uted normally (according to a bell-
shaped Gaussian curve), then you must
use nonparametric tests such as the

MAKE SURETO
SEPARATE THE
EVALUATION
BUDGET SO THAT
IT DOES NOT GET
SPENT ON THE
PROJECT ITSELF.

Kruskall-Wallis method, which bases
the analysis on rank rather than on raw
data. (See the box on pp. 59 for refer-
ences to useful analysis texts.) If you
have only one value from each method
or tool being evaluated, no analysis
techniques are available; you can only
present the results as we describe next.

ANALYSIS METHODS FOR CASE STUDIES

Once you have designed your case
study and collected the data, you must
analyze it to determine what has hap-
pened and if the results are significant.
Suppose your case study involves a sis-
ter experiment with one response value
per project. For example, for each pro-
ject participating in the study, you mea-
sure productivity in function points per
staff hour using method A (the current
method) and method B (the new me-
thod). Table 1, using real data] shows
what you might find.

The data in Table 1 indicate that
the projects are quite similar with res-
pect to the state variables: size, team
experience, project-manager experi-
ence, duration, and func-
ton-point adjustment fac-
tor. Thus, the results sug-
gest that using method B
would improve produc-
tivity. However, to draw
that conclusion, you must
be sure that both projects
are typical of those un-
dertaken by the organiza-
ton. You must also under-
stand the factors that are
important for software
development in the orga-
nization that might affect the success-
ful use of methods A and B.

In addition to looking at the quanti-
tative results, you can investigate how
typical these projects are by reviewing
the distribution of state-variable values
over all the projects undertaken by the
organization. Simple frequency plots
are useful for depicting the distribu-
tion of discrete state-variable values for
an organization. For example, Figure 1

IEEE SOFTWARE

57

Nomber of projects

0 -5 10 15
Toom experience (yeors)

Lower fail Lower fourth Upper fourth Upper toil Outfiers
Median ,
| v 4 v !
v v
/ '
0 100 400 500 600 700 800
Size (Fundtion points)

Figure 1. Frequency plot showing the
distribution of discrete values, in this
case the team experience for the set of
projects from which the case-study pro-
Jects were selected. The plot shows that
it is not unusual for a team to have
only one year of experience.

shows the team experience for the set
of projects from which the case-study
projects were selected. As you can see,
it is not unusual for a team to have
only one year of experience.

When you have state variables that
cover a wide range of values (such as
counts or ratios), a boxplot can help
you evaluate the distribution of data
values, particularly when data values
are skewed. Figure 2 shows a boxplot
of product-size data.

Boxplots give a simple visual display
of the distribution of a data set and
help you see how representative a sin-
gle point is. If the data set were distrib-
uted as a classic Gaussian (normal) dis-
tribution, the mean would be in the
center of the box, the tail lengths
would be approximately equal, and the
distance from the median to the upper
(or lower) tail would be approximately
three standard deviations.

It is clear from Figure 2 that the
product-size data set is skewed, and
that the two pilot projects were rela-
tively small ones (in the lower 25-per-
cent range). Thus, there is some doubt
about whether the case-study projects
were truly representative of the organi-
zation’s projects. Any productivity

improvements resulting from method

B might occur only on smaller projects.

Boxplots are also useful for con-
structing a company baseline. Figure 3
shows productivity distributions data
from 46 projects that used method A.

There are no outliers in the data set, :

Figure 2. Boxplot showing a distribution of data values over a wide range, in
this case the product size. Box plots are constructed from five statistics: the medi-
an, the upper fourth (or upper quartile), the lower fourth, the upper tail, and the
lower tail. The upper and lower fourths are the 75- and 25-percentile points.
The upper tail is constructed by muitiplying the box length by 1.5, adding the
value to the upper fourth, and truncating to the neavest actual value. The lower
tail is constructed by a similar process. Values that are larger than the upper tail
or smaller than the lower tail are called outliers.

so the baseline for average projects is
some productivity value between the
upper (0.044) and lower (0.076)
fourths; the upper and lower tails give
the upper and lower bounds for the
organization. If you place the produc-
tivity of a case-study project using
method B on the figure as an asterisk,
it becomes clear that the case study
had unusually high productivity com-
pared to the company baseline. The |
baseline can be refined further by
reconstructing it using projects that
have similar state-variable characteris-
tics to the case study.

SAMPLE CASE STUDIES

To see how software-engineering
case studies can be improved, we turn
now to three studies*’ aimed at assess-
ing the benefits of Fagan inspections."”
The studies represent not only the dif- |
ferent types we have discussed but also |
the many problems that can result !
from improper case-study planning !
and administration. ‘

The first study compared different-
ly treated components, the second
used a company baseline, and the third
involved sister projects. Each study |
was run for ICL’s VME development }
group. VME is a large general-purpose |
operating system (approximately two !
million lines of code) that has been !
under continual evolution since its first
release in the early 1970s. When the

case studies were performed, fairly
small teams (two to cight people)
worked on specific functional subsys-
tems. Staff turnover was low, and peo-
ple worked on the same team for many
years. The operating system was writ-
ten in a variant of Algol 68 and sup-
ported by a special-purpose database
environment that maintained records
of literals, data types, and module
interfaces, all supported with configu-
ration control.

Case study 1. The first case study
used a single project to investigate if
Fagan imspections would increase soft-
ware quality-without resulting in a
decrease-in productivity. Formally, the
hypothesis stated that the. use of Fagan
inspections has né effect :on-quality or
productivity. Forty-three of-the pro-
ject’s 73 programs were givén. detailed
design inspections; the rest were not.
Thus, it"was possible to compare the
postdesign fault profile of inspected
programs with the postdesign fault
profile of uninspected programs. The
response variables were fault counts
and-staff effort, with faults related to
where theyiwete discovered: the major
stage in the development peocess or
postrelease (for a six-month period).
Total project effort and inspection
effort were both recorded.

¢ Design-inspection results. The
case-study procedure ensured that
several productivity and quality mea-
surements were m'.ldc. The design

JULY 18895

inspections detected 50 percent of all |
faults found for this development (up |
to nine months postrelease). The !
inspections accounted for 6 percent of :
the total development costs. The !
fault-detection rate was approximately

1.2 hours per fault. However, a major
problem was that there was no basis
for identifying if these results were
good or bad because there was noth-
ing to compare them with!

o Postinspection faulr rares. Table 2

shows the main response variable —
the number of faults detected subse- '
quent to code production, as measured

for each group of modules for different
defect types. However, the modules
were not allocated to design inspection

randomly. In fact, the project staff se- | :
lected for inspection only those mod- !
ules they thought were “difficult”; i

“easy” modules were not given design '
i

inspections.
The lower ovérall-error rate indi-

cates that the uninspected programs |

were simpler. But the inspected pro-
grams revealed their faults earlier in the
development process than the unin-
spected programs. By the time they
reached system test, inspected programs

appeared to have higher quality than
uninspected programs, a situation con- !

firmed by the postrelease fault rates.
¢ Problems with case study 1. This

pilot project was chosen because the

team wanted to participate. There was
no formal selection to ensure that the
pilot was representative of typical ICL
projects. Furthermore, this predisposi-
tion to be helpful probably biased the
results in favor of the inspection tech-
nique. But the major problem with
this study was the nonrandom selec-
tion of modules that were subjected to
detailed design inspections. The deve-
lopment staff members themselves de-
cided which modules would be given
detailed inspections, and they selected
only those that were difficult. This was
a sensible approach for the project, but
it had a disastrous effect on the evalua-
tion’s validity. Had the allocation been
random, an analysis-of-variance on the
postdesign quality of each module

USEFUL ANALYSIS TEXTS
Experiment design

¢ W.G. Cochran and G.M. Cox, Experimental Designs, 2nd ed., John Wiley
& Sons, New York, 1957: Standard statistical text.

¢ D.T. Campbell and J. Stanley, Experimental and Quasi-Experimental
Designs for Research, Rand McNally, Chicago, 1966: Practical industrial experi-

mental design.

¢ S.L. Pfleeger, “Experimental Design and Analysis in Software
Engineering,” .Annals of Software Engineering, Vol. 1 No. 1, pp. 1-20; Design

issues for software experiments.

Survey onalysis

¢ W.G. Cochran, Sampling Techniques, 2nd ed., John Wiley & Sons, New
York, 1963: Discussion of methodological issues of surveys, in particular how to
sample a finite population so that survey results can be generalized.

¢ D. Coggon, G. Rose, and D J.P. Barker, Epidemiology for the Uninitiated,
3rd. ed. , British Medical Journal, London, 1993: Survey techniques used in

medical research.

Data analysis

¢ P.G. Hoel, Introduction to Mathematical Statistics, 3rd. ed., John leey & i

Sons, New York, 1962.

¢ S. Siegel and NJ. Castellan, Jr., Nonparametric Statistics for the Bebavioral
Sciences, 2nd ed., McGraw-Hill, New York, 1988: Classic text on nonparametric

analysis techmques

and other exploramry data-analysis methods, -

¢ D.C. Hoaglin, F. Mosteller, and J.W. Tukey, Understanding Exploratory
Data Analysis, John Wiley & Sons, New York, 1983: Descriptions of boxplots .

TABLE 2

COMPARISON OF FAULTS DETECTED

Test Method Fauhs per 100 lines of code ;
Code inspected Code not inspected P
(13 334 lines of tode) (8,852 lines of code) L
Code reading 0. 97 L 045] g
: Unit test 0.82 0.68
| :
i System test 0.20 0.36 f
! i
| Customer 0.012 0.043 -
‘ Overall 2.0 1.54 |
' Projedts using
method B |
I
062 004 006 008 010 012 014 016 018 020 02 O0M ‘
F (pom: por hour)

Figure 3. Boxplot u.ced 1o construct a company baselme In this cuse, 46 pro_/ect.r
using method A are compared with one project using method B. The boxplot
shows that this single case study bad unusually high productivity compared to the

company baseline.

"IEEE SOFTWARE

59

(measured in defects per hundred lines
of code) would have revealed if the
inspections made a significant differ-
ence. But because difficult modules
exhibit more defects than simple mod-
ules even after design reviews, this
analysis was not valid. Thus the only
useful result is the overall defect rate
for each major postdesign activity.
This problem could have been avoided
if the case study had been planned and
controlled as an activity in its own
right, rather than as an adjunct to the
development effort.

Other problems resulted from this
lack of planning. For example, several
other response variables were collected
but could not be properly interpreted
because there was no basis of compari-
son. Thus, it was impossible to tell if
inspections decreased productivity.

Case study 2. The second case study
looked at whether Fagan inspections
would increase software quality through
a cost-effective detecdon of defects. A
single project was used and compared
with a baseline made up of all other
concurrent projects. Thus, it was possi-

REPLICATED PRODUCT DESIGN

ble to compare the postdesign fault pro-
file of the pilot project with the postde-
sign fault profile of other projects.

The response variables were fault
counts and staff effort. Here, faults
were again related to each major stage
in the development process. In addi-
tion, faults were classified as design or
coding faults. Total project effort, effort
for conventional testing, and inspection
effort were recorded. As before, the
pilot project was self-selected because
the development team was interested in
the inspection technique.

o Design-inspection results. This sec-
ond case study, involving the production
of a new subsystem of approximately
39,000 lines of code, gave results broad-
ly similar to the first. However, because
this case study collected data on testing
and inspection effort, it was possible to
assess the relative costs of fault detec-
tion and correction. The inspections
detected 41 percent of in-house faults
at a cost of 9 percent of the project-
development effort. The cost-per-fault
was approximately 1.6 hours, with an
average cost-per-fault detected postde-
sign of 8.5 hours. This result suggests

It is sometimes possible to develop a product a second time using a different
development method. This is called a replicated product design. To use it: \
1. Replicate an existing product using the new method or tool.
2. Measure the response variables on both versions of the product.
3. Compare the two sets of response variables.

| The advantage of this design is that some of the differences between the sis-
! ter projects is eliminated because they both produce the same project.
| However, usually only one of the products is produced under normal commer- |

cial conditions.

This method is often used when a research group wants to demonstrate the
superiority of a new method compared with current development methods.
However, if the research group also undertakes the replication project, the !

motivated to see it succeed.

released to customers.

results will be biased because the research group will usually have more experi-
ence with the new method than would the development staff and are more

These problems can be overcome if the research group sponsors the devel-
opment group to undertake both projects to commercial standards, and the
product that performs best in final system test (or acceptance test) is the one

that inspections are a very cost-effec-
tive fault-detection method.

¢ Postdesign fault profile. When the
fault profile of the pilot project postde-
sign was compared with the fault pro-
file found for other projects during the
same time, it appeared that postdesign
faults were again being found earlier in
the development process, as Table 3
shows. However, the baseline does not
include any assessment of variability.

¢ Fault types. Table 4 shows the
types of fault found postdesign, indicat-
ing that inspections reduced the num-
ber of design faults but not the number
of interface faults (which can be regard-
ed as a kind of design fault). These find-
ings were reviewed with the develop-
ment group, which pointed out that the
faults were found in code that inter-
faced to a subsystem developed by team
members who refused to attend inspec-
tions. Thus, they reasoned, the results
actually supported the need for inspec-
tions. This result emphasizes the im-
portance of monitoring the pilot pro-
ject for unexpected effects. If the inter-
face problems had not been traced back
to the nonparticipating group, the re-
sults might have been misinterpreted.

¢ Problems with case study 2. As in
the first case study, the pilot project
was not chosen using any formal se-
lection process. However, the more
significant problems occurred at the
analysis stage. The construction of the
baseline would have been greatly im-
proved by using a boxplot to indicate
the extent of natural variability. In some
circumstances, it might have been bet-
ter to use a direct measure of faults
per hundred lines of code during sys-
tem test as the response measure
rather than percentages. However, in
this particular environment, there was
a considerable variation in basic fault
rates from different types of project.
The pilot project was a new utility pro-
ject and was expected to have lower
fault rates than some of the more com-
plex enhancement projects; a baseline
based on faults per hundred lines of
code would have to have been derived
from a very small selection of similar

60

JULY 1885

projects. A baseline based on internal
distribution of faults was valid for all
projects because they all use the same
development process.

Finally, it is important to note that
the case study used a surrogate mea-
sure of quality. Actual quality depends
on the defects found during use, but
the analysis was based on the defects
found during in-house testing. Thus
the conclusions may be misleading.

Case study 3. The third investigation
was not planned as a case study. Rather,
it occurred naturally as two parts of the
same project were developed in differ-
ent ways. At first, the primary part of
the project was planned; however, later
a large additional functional develop-
ment was required. The same team
produced both subprojects, and testing
on each was done by the same staff
member. Although these subprojects
were not selected to be part of a case
study, they were typical of the commer-
cial projects undertaken by the group.

Because the project manager want-
ed to get the second part of the project
completed as quickly as possible, he
did not permit any detailed design in-
spections. His unstated hypothesis was,
therefore, that detailed design inspec-
tions cause delays to product develop-
ment and do not have a major influ-
ence on quality. In effect, what result-
ed was a case study based on sister sub-
projects, with response variables de-
fined as time to complete production,
effort, and fault rates.

¢ Results. The results, shown in
Table 5, indicate that trading quality
for productivity simply did not work,
and the hypothesis can be firmly re-
jected. The subproject without inspec-
tions took far longer to produce than
the much larger “high-quality” sub-
project. Additional time and effort
were needed to test the code that had
not been subject to design inspections.
This diminished productivity is clear,
even though the state variables show
that the subproject without inspec-
tions was much smaller than the other
subproject in terms of absolute size

TABLE 3 .
COMPARISON OF FAULT PROFILES

Test Method Percentage Faults
Pilot Project ANl Projects
Code reading 57.5 V 37.6
Unit test 384 512
| System test 4.1 11.2

TABLE 4

COMPARISON OF FAULT TYPE

Foult Type Percentage Faults
Pilot Project All Projects
Interface 5.8 21
Design 8.1 133
Code 81.0 70.3
Other 5.1 14.2
and number of modules. In addition, hat is the next step?

code from the subproject done without
design inspections was of poor quality
(in terms of fault rates) and was more
expensive than the inspected code.

The case study is convincing be-
cause the difference in results is so dra-
matic. In addition, many of the typical
problems with case-study control and
variation were absent because the same
personnel were involved, the same
development environment was used,
and the applications were related.

¢ Problems with case study 3. Clear-
ly, the study was not planned in ad-
vance. Nevertheless, it conformed
quite well to case-study requirements
and resulted in sufficient information
to reject the hypothesis that inspec-
tions increase time to market and do
not affect quality. However, this study
is not completely without problems.
The quality measure was based on
prerelease rather than postrelease de-
fects, again reflecting a developer’s
rather than a user’s view of software
quality. A more subtle problem in-
volves whether or not the two parts of
the project are really comparable. Ac-
cording to the subjective opinion of
the staff involved, the two subprojects
were similar in complexity; however,
there were no objective measures to
confirm this claim.

Software-engineering experi-
mentation is a necessary adjunct to
process improvement, and objective,
meaningful case studies can help us
understand our processes and control
the improvements. Many case studies
are performed, but few are done well.
The case-study process is itself in need
of improvement.

Good case studies involve:

¢ Specifying the hypothesis under
test.

¢ Using state variables for project
selection and data analysis.

¢ Establishing a basis for compar-
isons.

¢ Planning case studies properly.

¢ Using appropriate presentation
and analysis techniques to assess the
results.

We must stop and assess each tool
and technology before we jump on a
promotional bandwagon. Even when
formal experiments are not available or
possible, we can perform case studies to
determine if the tool or technology is
helpful on our typical projects. That is,
we need not wait until a method is
proven effective in every environment;
we can run careful tests to see if the
method is useful in our particular envi-
ronments.

But such investigation requires the

tEEE SbFTWARE

61

investment of time and effort, not only
in planning and carrying out the case
studies, but also in analyzing and
reporting the results. The findings of
academic experiments are often widely
publicized, as universities encourage
their staff to publish and disseminate
results. But the results of industrial case
studies, less often made available to the
public, are no less relevant to practi-

tioners who are seeking new or im-
proved ways of developing and main-
taining software.

The results of case studies are con-
text-dependent, but we can be more
confident that a method is generally
beneficial if encouraging results are
reported by a number of different orga-
nizations under a number of different
conditions. We can also better under-

ACKNOWLEDGMENTS

final version.

REFERENCES

This article is based on research undertaken as part of the Desmet project, a collabo-
rative project funded by the UK Department of Trade and Industry and the Science and
Engineering Research Council. The aim of the project was to develop and validate a
methodology for evaluating software-engineering methods and tools. We are also indebt-
ed to the referees, who provided valuable suggestions that we have incorporated into the

1. D.R. Lindstrom, “Five Ways to Destroy a Development Project,” IEEE Sofrware, Sept. 1993, pp.
55-58. .

. N. Fenton, S.L. Pfleeger, and R.L. Glass, “Science and Substance: A Challenge to Software Engi-
neers,” IEEE Software, July 1994, pp. 86-95.

. V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in Software Engineering,” IEEE

Transactions Software Eng., Juty 1986, pp. 758-773.

R.K. Yin, Case Study Research Design and Methods, Sage Publications, Beverley Hills, Calif., 1984.

. C.R. Necco, RN.W. Tsa, and KW. Hoogeston, “Current Usage of CASE Software,” . Systems

Management, May 1989.

D.N. Card, F.M. McGarry, and G.T. Page, “Evaluating Software-Engineering Technologies,”

IEEE Transactions Software Eng., July 1987, pp. 845-851.

7.].-M. Desharnais, Analyse Statistique de la Productivitie des Project de Developpment en Informatique a

Partir de la Technique des Point des Fonction, master’s thesis, University of Quebec, Montreal, 1989;

in French.

B.A. Kitchenham, A.P. Kitchenham, and J.P. Fellows, “The Effects of Inspections on Software

Quality and Productivity,” ICL Technical 7., May 1986, pp. 112-122.

B.A. Kitchenham, “Management Metrics,” Software Reliability Achievement and Assessment,

B. Littlewood, ed., Blackwell Scientific Publications, Barking, UK, 1987, pp. 113-124.

[

.

» o

&

i

A

10. M.E. Fagan, “Design and Code Inspections to Reduce Errors in Program Development,”

IBM Systems J., Mar. 1976, pp. 219-248.

Barbara Kitchenham is a software-engineering consultant at Britain’s National
Computing Centre. Her interests are software metrics and their application to
project management, quality control, and evaluation of software technologies.
She was a programmer for [CL’s Operating System Division before becoming
involved with a number of UK and European research projects on software qual-
ity, software-cost estimation, and evaluation methodologies for software technol-
ogy. She has written more than 30 papers on software metrics.

Kitchenham received a PhD from the University of Leeds. She is an associate
fellow of the Insitute of Mathematics and Its Applications and a fellow of the
Royal Statistical Society.

stand the limits of methods and tools if
we get conflicting reports from different
case studies.

We encourage you to assess the work
of others, not only in terms of the issues
raised here, but also in terms of whether
it is applicable to your projects. And we
encourage you to publish your case-
study results, to the benefit of the gener-
al software-engineering community. ¢

Lesley Pickard is an inde-
pendent consultant. In the
last 10 years she has been
involved in researching the
use of statistical techniques
and software metrics for

of software development.
Much of her work has been
part of European collabo-
rative projects. She has
written several technical papers.

Pickard received a BSc in applied mathematics
from Abertay University, Scotland, and a PhD in
computer science from the City University, London.
She is a fellow of the Royal Statistical Society.

Shari Lawrence Pfleeger
is president of Systems/
Software, a consultancy
that specializes in software
engineering and technolo-
gy transfer. Her clients
have included major cor-
porations, government
agencies, and universities.
Pfleeger has been a princi-
pal scientist at both the
Contel Technology Center and Mitre. She is cur-
rently a visiting professorial research fellow at the
Centre for Software Reliability, investigating how
software-engineering techniques affect software
quality. She has written two software-engineering
texts and several dozen articles.

Pfleeger received a PhD in information technol-
ogy from George Mason University. She is an
adviser to IEEE Spectrum.

. Address questions about this article to Kitchenham at National Computing Centre, Oxford House, Oxford Rd., Manchester M1 7ED, UK; barbara.kitchenham

@ncc.co.uk.

the monitoring and control -

62

JULY 1885

