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Basic notions

D is a subset of Rn with n ∈ N. Let f be a function from D to R :

f : x ∈ D ⊆ Rn → f (x) ∈ R.

Let S be a subset of the domain D. The set S is the set of
feasible points (or admissible points), and sometimes it can
be described by a finite number of constraints.

An optimization problem consists in finding the maximum
(respectively, the minimum) of f on the set S. It is denoted by :

(P) max
x∈S

f (x) resp. (Q) min
x∈S

f (x)

In both cases, f is called the objective function.
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Solutions and value

Definition
• The point x is a solution of problem (P) if x ∈ S and for all x in S :

f (x) ≤ f (x).

• The point x is a solution of problem (Q) if x ∈ S and for all x in S :

f (x) ≤ f (x).

Sol(P) denotes the set of solutions of problem (P), and Sol(Q)
denotes the set of solutions of problem (Q).

Definition
• The value of problem (P) is the supremum of the set {f (x) | x ∈ S}.

• The value of problem (Q) is the infimum of the set {f (x) | x ∈ S}.
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If x is a solution of problem (P), then f (x) = max{f (x) | x ∈ S}
and f (x) is called the maximum value of f on S.

If x is a solution of problem (Q), then f (x) = min{f (x) | x ∈ S}
and f (x) is called the minimum value of f on S.

Remark
If problem (P) (respectively, problem (Q)) has several solutions, for
instance, x ∈ S and x̃ ∈ S with x 6= x̃ , then it must be that :

f (x) = f (x̃).

That is, the maximum value (respectively, the maximum value) of f
on S is unique. This is a simple consequence of the definition of
solution.
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Local solutions

Let d : D × D → R+ be a distance on D ⊆ Rn, for instance, the
Euclidean distance. The open ball in D of center x̄ and radius
r > 0 is :

B(x̄ , r) = {x ∈ D | d(x , x̄) < r}.

Definition
• The point x is a local solution of problem (P) if x ∈ S and there
exists r > 0 such that for all x in S such that d(x , x) < r , we have that
f (x) ≤ f (x).

• The point x is a local solution of problem (Q) if x ∈ S and there
exists r > 0 such that for all x in S such that d(x , x) < r , we have that
f (x) ≤ f (x).
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Examples of optimization problems

Consumer behavior.

The utility function u represents the preferences of the
consumer on consumption bundles x = (x1, ..., xL) ∈ RL

+.

Let p = (p1, ...,pL) be a price system and let w ∈ R+ be the
wealth of the consumer. The demand of the consumer is the set
of solutions of the following maximization problem :

max u(x1, ..., xL)
(x1, ..., xL) ∈ S

where the set of feasible points is :

S =

{
(x1, ..., xL) ∈ RL :

{
x` ≥ 0, ∀` = 1, ...,L
p1x1 + ...+ pLxL ≤ w

}
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Cost minimization.

We consider a firm that produces the good L, by using the
goods 1, ...,L− 1 as inputs. Its production function is
f : (z1, ..., zL−1) ∈ RL−1

+ → f (z1, ..., zL−1) ∈ R+.

Let p = (p1, ...,pL−1) be the price system of the inputs and let
q ≥ 0 be a level of output. The cost minimization problem is :

min p1z1 + . . .+ pL−1zL−1
(z1, ..., zL−1) ∈ S

where the set of feasible points is :

S =

{
(z1, ..., zL−1) ∈ RL−1 :

{
z` ≥ 0,∀` = 1, ...,L− 1
f (z1, ..., zL−1) ≥ q

}
The demand of inputs of the firm is the set of solutions of the
cost minimization problem. The cost function c(p,q) of the firm
is the value of the cost minimization problem.
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Game theory.

The best response of a player is the set of solutions of the
maximization of his payoff function in his own strategies, by
taking as given the strategies of the other players.

Consider a game with two players. For each player i = 1,2, the
set Si is the set of strategies of player i and

ui : (s1, s2) ∈ S1 × S2 → ui(s1, s2) ∈ R

is the payoff function of player i .

The best response of player i for a given strategy s̄j ∈ Sj of
player j , with j 6= i , is the set of solutions of the following
maximization problem :

max ui(si , s̄j)
si ∈ Si
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Extreme Value Theorem (or Weierstrass Theorem)

Let f be a function from D ⊆ Rn to R. The following theorem
provides sufficient conditions for the existence of a solution.

Theorem

Problem (P) (respectively, problem (Q)) has at least a solution if the
set of feasible points S is a non-empty closed and bounded subset
of Rn, and f is continuous on S.

• The set S is closed in Rn if and only if it coincides with its
closure clS, where :

clS = {x ∈ Rn | ∃ (xk )k∈N ⊆ S such that lim
k→∞

xk = x}.

• The set S is bounded in Rn if and only if it is included in
some closed ball of Rn.
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Uniqueness of the solution

As we have already remarked, an optimization problem might
have several solutions.

The following proposition provides sufficient condition for the
uniqueness of the solution.

Proposition

Assume that the set of feasible points S is convex and problem (P)
(respectively, problem (Q)) has at least a solution x̄.

• if f is strictly quasi-concave on S, then x̄ is the unique solution of
problem (P).

• if f is strictly quasi-convex on S, then x̄ is the unique solution of
problem (Q).
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Open sets and interior

Let U be a subset of Rn. The set U is open in Rn if and only if
for all x̄ ∈ U, there exists an open ball B(x̄ , r) in Rn such that :

B(x̄ , r) ⊆ U.

Proposition
a) A finite intersection of open sets is open.
b) A union of finitely many or infinitely many open
sets is open.

Let A be a subset of Rn. The interior of A is the largest open
set in Rn that is included in A. The interior of A is denoted by
intA. In other words, intA is the union of all the open sets in Rn

included in A.

Hence, A is open in Rn if and only if A = intA.
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First order necessary conditions

Let U be an open subset of Rn. Let f be function that has all
the partial derivatives in every point of U. A stationary point of
f is a point where all the first derivatives are equal to 0.

Consider now the two following problems, where we maximize
(respectively, minimize) the function f on the open set U.

(P) max
x∈U

f (x) resp. (Q) min
x∈U

f (x)

Theorem
If x̄ ∈ U is a solution of problem (P) (respectively, of problem
(Q)), then ∇f (x̄) = 0, i.e.,

∂f
∂xi

(x̄) = 0, for all i = 1, . . . ,n.

That is, x̄ is a stationary point of f .
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Sketch of the proof

We prove the theorem above for a solution x̄ ∈ U of problem
(P). We assume that f is differentiable. Then,

1 the directional derivative of f at x̄ exists for every
direction h ∈ Rn, ||h|| = 1, i.e.,

Dhf (x̄) = lim
t→0+

f (x̄ + th)− f (x̄)

t
exists and it is finite,

2 Dhf (x̄) = ∇f (x̄) · h.

Claim 1. ∇f (x̄) · h ≤ 0 for all h ∈ Rn, h 6= 0.

Otherwise, assume that there is a direction h̄ 6= 0 such that :

∇f (x̄) · h̄ > 0.
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Then, using the definition of directional derivative, for t > 0
sufficiently small, the points (x̄ + t h̄) belong to some open ball
of center x̄ and

f (x̄ + t h̄) > f (x̄).

But, the inequality above contradicts the fact that x̄ solves
problem (P). Hence, Claim 1 is completely proved.

Claim 2. ∇f (x̄) · h = 0 for all h ∈ Rn.

Pick any h ∈ Rn, h 6= 0, and consider the opposite direction
−h ∈ Rn.

By Claim 1, we get ∇f (x̄) · h ≤ 0 and ∇f (x̄) · (−h) ≤ 0.

Hence, we have that ∇f (x̄) · h = 0.

We then conclude that ∇f (x̄) · h = 0 for all h ∈ Rn, and
consequently it must be that ∇f (x̄) = 0.
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First order sufficient conditions

If x̄ ∈ U is a stationary point of f , x̄ is not necessarily a
solution of problem (P) (respectively, of problem (Q)).

However, under additional conditions one gets the following
result.

Let U be an open and convex subset of Rn and let f be a
continuously differentiable function from U to R.

Theorem
• If f is concave in U and ∇f (x̄) = 0, then x̄ ∈ U is a solution
of problem (P).

• If f is convex in U and ∇f (x̄) = 0, then x̄ ∈ U is a solution of
problem (Q).
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Second order necessary conditions for local solutions

We now consider a function f that is C2 on U. We then get
information also on the second derivatives of f , that is, on the
Hessian matrix D2f (x̄) of f at any local solution x̄ .

Theorem

If x̄ is a local solution of problem (P) (respectively, of problem
(Q)), then ∇f (x̄) = 0 and the Hessian matrix D2f (x̄) of f at x̄ is
negative semi-definite (respectively, positive semi-definite).
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Second order sufficient conditions for local solutions

Let f be a C2 function on U.

Theorem

If x̄ ∈ U satisfies ∇f (x̄) = 0 and the Hessian matrix D2f (x̄) is
negative definite (respectively, positive definite), then x̄ is a
local solution of problem (P) (respectively, of problem (Q)).
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Optimization problems with equality constraints

Let U be an open subset of Rn. The functions f and
g1, . . . ,gi , . . . ,gp are defined on U. We consider the following
optimization problems with equality constraints.

(P)

{
max
x∈U

f (x)

gi(x) = 0, i = 1, . . . ,p
(Q)

{
min
x∈U

f (x)

gi(x) = 0, i = 1, . . . ,p

Definition

Assume that g1, . . . ,gi , . . . ,gp are C1 on U. Let x̄ ∈ U be a point
such that gi(x̄) = 0 for all i = 1, . . . ,p. The constraint
qualification condition is satisfied at x̄ if all the gradient
vectors ∇g1(x̄), . . . ,∇gi(x̄), . . . ,∇gp(x̄) exist and are linearly
independent.
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First order necessary conditions

Theorem

Assume that the functions f and g1, . . . ,gi , . . . ,gp are C1 on U.

Let x̄ ∈ U be a solution of problem (P) (resp., problem (Q))
that satisfies the constraint qualification condition.

Then, there exists a vector of Lagrange multipliers
λ̄ = (λ̄1, . . . , λ̄i , . . . , λ̄p) ∈ Rp such that :

∇f (x̄)−
p∑

i=1

λ̄i∇gi(x̄) = 0
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A counterexample

Remark
The previous result does not hold true if the constraint qualification
condition is not satisfied. Indeed, consider the following minimization
problem : 

min
(x,y)∈R2

f (x , y) = x + y

g1(x , y) = (x − 1)2 + y2 − 1 = 0
g2(x , y) = (x + 1)2 + y2 − 1 = 0

{(x , y) ∈ R2 | g1(x , y) = g2(x , y) = 0} = {(0,0)} = Set of solutions.

∇f (0,0) = (1,1), ∇g1(0,0) = (−2,0), ∇g2(0,0) = (2,0).

∇g1(0,0) and ∇g2(0,0) are not linearly independent, because
∇g2(0,0) = −∇g1(0,0).

@(λ1, λ2) ∈ R2 such that ∇f (0,0) = λ1∇g1(0,0) + λ2∇g2(0,0).
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Lagrangian function

Definition
The Lagrangian function L associated with problem (P)
(resp., problem (Q)) is the function from U × Rp to R defined
by :

L(x , λ) = f (x)−
p∑

i=1

λigi(x),

where λ = (λ1, . . . , λi , . . . , λp) ∈ Rp.

Notice that for every (x̄ , λ̄) ∈ U × Rp :

∇xL(x̄ , λ̄) = ∇f (x̄)−
∑p

i=1 λ̄i∇gi(x̄), and

∀i = 1, . . . ,p,
∂L
∂λi

(x̄ , λ̄) = gi(x̄).
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First order sufficient conditions

Let U be an open and convex subset of Rn.

Theorem

Assume that the functions f and g1, . . . ,gi , . . . ,gp are C1 on U.
Let x̄ ∈ U be a point such that gi(x̄) = 0 for all i = 1, . . . ,p.

If there exists a vector of Lagrange multipliers
λ̄ = (λ̄1, . . . , λ̄i , . . . , λ̄p) ∈ Rp such that

∇f (x̄)−
p∑

i=1

λ̄i∇gi(x̄) = 0,

and the Lagrangian function L is concave (resp., convex) in x,
then x̄ is a solution of problem (P) (resp., problem (Q)).
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Second order necessary conditions for local solutions

Assume that f and g1, . . . ,gi , . . . ,gp are C2 on U. Consider
x̄ ∈ U and the following set :

Z (x̄) = {z ∈ Rn | ∇gi(x̄) · z = 0, ∀i = 1, . . . ,p}.

Denote by D2
xL(x̄ , λ̄) the partial Hessian matrix of the

Lagrangian function L(·, λ̄) with respect to x at x̄ .

Theorem
Let x̄ be a local solution of problem (P) (resp., problem (Q))
that satisfies the constraint qualification condition, and
λ̄ ∈ Rp such that ∇xL(x̄ , λ̄) = 0.

Then, D2
xL(x̄ , λ̄) is negative semi-definite (resp., positive

semi-definite) on Z (x̄), i.e.,

zT D2
xL(x̄ , λ̄)z ≤ 0 (resp. ≥ 0), for all z ∈ Z (x̄).
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Second order sufficient conditions for local solutions

Assume that f and g1, . . . ,gi , . . . ,gp are C2 on U.

Theorem
Let x̄ ∈ U such that gi(x̄) = 0 for all i = 1, ...,p, and
∇f (x̄)−

∑p
i=1 λ̄i∇gi(x̄) = 0, for some λ̄ ∈ Rp. If

zT D2
xL(x̄ , λ̄)z < 0 (resp. > 0), for all z ∈ Z (x̄) \ {0},

that is, the partial Hessian matrix of the Lagrangian function
L(·, λ̄) at x̄ , i.e., D2

xL(x̄ , λ̄) is negative definite (resp., positive
definite) definite on the set Z (x̄) \ {0}, then x̄ is a local
solution of problem (P) (resp., problem (Q)).
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Conditions on the border Hessian determinants

We assume that the constraint qualification condition is
satisfied at x̄ ∈ U.

Consider the mapping g = (g1, . . . ,gi , . . . ,gp) defined by :

g : x ∈ U ⊆ Rn −→ g(x) = (g1(x), . . . ,gi(x), . . . ,gp(x)) ∈ Rp

We rank the components of x in such a way that the first p
columns of the Jacobian matrix Dg(x̄) are linearly independent.

This is possible because the Jacobian matrix Dg(x̄) has rank p,
since its rows are the gradients of the constraint functions.
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For every r = p + 1, . . . ,n, define the following border Hessian
determinant :

Br (x̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0 ∂g1(x̄)
∂x1

. . . ∂g1(x̄)
∂xr

...
. . .

...
...

...
...

0 . . . 0 ∂gp(x̄)
∂x1

. . .
∂gp(x̄)
∂xr

∂g1(x̄)
∂x1

. . .
∂gp(x̄)
∂x1

∂2L(x̄)

∂x2
1

. . . ∂2L(x̄)
∂x1∂xr

...
. . .

...
...

...
...

∂g1(x̄)
∂xr

. . .
∂gp(x̄)
∂xr

∂2L(x̄)
∂xr∂x1

. . . ∂2L(x̄)

∂x2
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Proposition

• If for all r = p + 1, . . . ,n, (−1)r Br (x̄) > 0, then the partial
Hessian matrix of the Lagrangian function L(·, λ̄) at x̄ , i.e.,
D2

xL(x̄ , λ̄) is negative definite on Z (x̄) \ {0}.

• If for all r = p + 1, . . . ,n, (−1)pBr (x̄) > 0, then the partial
Hessian matrix of the Lagrangian function L(·, λ̄) at x̄ , i.e.,
D2

xL(x̄ , λ̄) is positive definite on Z (x̄) \ {0}.
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Interpretation of the Lagrange multipliers

Consider b = (b1, ...,bi , ...,bp) ∈ Rp and the “perturbed"
problem (Pb) of problem (P) :

(Pb)

{
max
x∈U

f (x)

gi(x) = bi , i = 1, . . . ,p

Assume that the value v(b) of problem (Pb) is a well-defined
function around 0 ∈ Rp. That is, there exists an open ball
B ⊆ Rp of center 0 such that for all b ∈ B, problem (Pb) has at
least a solution in U.

For all b ∈ B, the value function v(b) is then defined by :

v(b) = max{f (x) : x ∈ U and gi(x) = bi ,∀i = 1, . . . ,p}

Also assume that the value function v is differentiable on B.
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Let x̄ be a solution of problem (P0). Consider the mapping
g = (g1, . . . ,gi , . . . ,gp) from U to Rp and notice that g(x̄) = 0.

For all x in a open neighborhood of x̄ , define V as follows :

V (x) := f (x)− v(g(x)) ≤ 0 and V (x̄) = 0.

Then ∇V (x̄) = 0, because x̄ maximizes the function V in an
open set.

From the chain rule for differentiable mappings, one gets :

0 = ∇V (x̄) = ∇f (x̄)− [Dg(x̄)]T ∇bv(0).
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Equivalently,

∇f (x̄) =

p∑
i=1

∂v
∂bi

(0)∇gi(x̄).

Let λ̄ = (λ̄1, . . . , λ̄i , . . . , λ̄p) ∈ Rp the Lagrange multipliers
associated with the solution x̄ of problem (P0). That is,

∇f (x̄) =

p∑
i=1

λ̄i∇gi(x̄)

Hence, for each i = 1, . . . ,p, the Lagrange multiplier λ̄i is equal

to the partial derivative
∂v
∂bi

(0) of the value function v at b = 0.
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