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Inequality constraints

Let U be an open subset of Rn. The functions f and
h1, . . . ,hj , . . . ,hm are defined on U.

We study the maximization problem (I) with the following
inequality constraints (i.e., ≤ 0).

(I)

{
max
x∈U

f (x)

hj(x) ≤ 0, j = 1, . . . ,m

Remark. The simple adaptation of the following study to
minimization problems of a function a, or optimization problems
with inequality constraints described by the inequality cj(x) ≥ 0
is left to the reader, by remarking that :

1 min a(x) = max f (x), with f (x) := −a(x).
2 cj(x) ≥ 0 if and only if hj(x) ≤ 0, with hj(x) := −cj(x).
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Binding constraints

Definition

Let x∗ ∈ U, we say that the constraint j is binding at x∗ if
hj(x∗) = 0. We denote :

1 J(x∗) the set of all binding constraints at x∗, that is :

J(x∗) := {j = 1, ...,m : hj(x∗) = 0},

2 m∗ ≤ m the number of elements of J(x∗), and
3 h∗ := (hj)j∈J(x∗) is the following mapping :

h∗ : x ∈ U ⊆ Rn −→ h∗(x) = (hj(x))j∈J(x∗) ∈ Rm∗
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Karush-Kuhn-Tucker (KKT) conditions

From now on, f and h1, . . . ,hj , . . . ,hm are C1 on U.

KKT conditions associated with the maximization problem (I) :

(KKT )


∇f (x) =

∑m
j=1 µj∇hj(x),

∀j = 1, ...,m, µj ∈ R+ and hj(x) ≤ 0,
∀j = 1, ...,m, µjhj(x) = 0 (complementary slackness).

That is, at x :
1) The gradient of the objective function is a linear combination
of the gradients of the constraint functions, with positive
coefficients µj ≥ 0.
2) All the constraints are satisfied.
3) If µj > 0, then the constraint j is binding at x . If x belongs to
the interior of the constraint j (i.e., hj(x) < 0), then µj = 0.
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Linearized problem

Let x∗ ∈ U be a solution of problem (I).

The main idea to prove that KKT conditions are necessary
conditions to solve problem (I) is to replace problem (I) with
the linearized problem (L∗) :

(L∗)

{
max
x∈Rn

∇f (x∗) · (x − x∗)

∇hj(x∗) · (x − x∗) ≤ 0, j ∈ J(x∗)

Notice that what really matters in problem (L∗) is the use of the
set J(x∗) of binding constraints at x∗.
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Generalized constraint qualification condition

Definition
Let x∗ ∈ U be a solution of problem (I) such that hj(x∗) = 0
for all j ∈ J(x∗). The generalized constraint qualification (GCQ)
condition is satisfied at x∗ if x∗ is also a solution of problem
(L∗).

Remark that condition GCQ is not always satisfied.

One can easily find examples where x∗ ∈ Sol(I), but
x∗ /∈ Sol(L∗).
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Existence of Lagrange multipliers

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.

If x∗ ∈ U is a solution of problem (I) and x∗ satisfies condition
GCQ, then there exists µ∗ = (µ∗1, ..., µ

∗
j , ..., µ

∗
m) ∈ Rm

+ such that
the vector (x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions
associated with problem (I).
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Sketch of the proof

If ∇f (x∗) = 0, take µ∗j = 0 for all j = 1, ...,m.

Assume now that ∇f (x∗) 6= 0. Since x∗ solves problem (L∗),
there is no x 6= x∗ such that :

∇f (x∗) · (x − x∗) > 0 = ∇f (x∗) · (x∗ − x∗),

and
∇hj(x∗) · (x − x∗) ≤ 0, ∀j ∈ J(x∗).

Take b = ∇f (x∗), and aj = ∇hj(x∗) for all j ∈ J(x∗).

9



By Farkas’ Lemma, there exists µ∗ = (µ∗j )j∈J(x∗) ∈ Rm∗
+ such

that :
b =

∑
j∈J(x∗)

µ∗j aj .

For all j /∈ J(x∗), take µ∗j = 0.

By construction, we get µ∗j hj(x∗) = 0 for all j = 1, ...,m, and

∇f (x∗) =
m∑

j=1

µ∗j ∇hj(x∗).

Further, hj(x∗) ≤ 0 for all j = 1, ...,m, because x∗ is a solution
of problem (I).

Hence, (x∗, µ∗) satisfies the KKT conditions associated with
problem (I).
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Sufficient conditions for generalized constraint
qualification

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.
1 If hj is linear or affine for all j = 1, ...,m, then condition

GCQ is satisfied.
2 (Slater’s condition) Assume that U is also convex and :

the constraint functions hj is convex for all j = 1, ...,m,
there exists x̃ ∈ U such that hj (x̃) < 0 for all j = 1, ...,m.

Then, condition GCQ is satisfied.
3 (Rank condition) If all the gradients (∇hj(x∗))j∈J(x∗) are

linearly independent, i.e., the rank of the Jacobian matrix
Dh∗(x∗) is equal to m∗ (full row rank), then condition GCQ
is satisfied.
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Two remarks

Remark 1. In the Rank condition above, one easily recognizes
the classical constraint qualification condition given for
optimization problems with equality constraints.

Remark 2. In Slater’s condition, the convexity of hj can be
weakened by another assumption, that is, hj is pseudo-convex.

It is well know that :

1 A C1 convex function is pseudo-convex.
2 A C1 quasi-convex function, with gradient different from

zero everywhere, is pseudo-convex. Hence, in Slater’s
condition, the convexity of hj can be replaced with the
following assumption : hj is quasi-convex with ∇hj(x) 6= 0
for all x ∈ U.
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KKT as necessary conditions

As a consequence of the previous two theorems one gets the
following theorem.

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.

Let x∗ ∈ U be a solution of problem (I).

Assume that one of the following three conditions is satisfied.

1 If hj is linear or affine for all j = 1, ...,m.
2 Slater’s condition.
3 Rank condition.

Then, there exists µ∗ = (µ∗1, ..., µ
∗
j , ..., µ

∗
m) ∈ Rm

+ such that
(x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions associated
with problem (I).
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KKT as sufficient conditions

Let U be an open and convex subset of Rn.

Theorem

Assume that f and h1, . . . ,hj , . . . ,hm are C1 on U.

If there exists µ∗ = (µ∗1, ..., µ
∗
j , ..., µ

∗
m) ∈ Rm

+ such that
(x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions associated
with problem (I), and the following condition (C) holds true,
then x∗ is a solution of problem (I).

Condition (C) : The function L(x) = f (x)−
∑m

j=1 µ
∗
j hj(x) is

concave in x.
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Let U be an open and convex subset of Rn. Assume that f and
h1, . . . ,hj , . . . ,hm are C1 on U.

Proposition
The previous theorem still holds true if Condition (C) is
replaced by one of the following two conditions.

1 The objective function f is concave and the constraint
functions hj are quasi-convex for all j = 1, ...,m.

2 The objective function f is quasi-concave with ∇f (x) 6= 0
for all x ∈ U, and the constraint functions hj are
quasi-convex for all j = 1, ...,m.

Hence, in order to check if KKT conditions are sufficient
conditions to solve problem (I), we have to verify also some
properties of the objective function f .
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Sketch of the proof

Without loss of generality, f is pseudo-concave on U.

Assume that there exists µ∗ = (µ∗1, ..., µ
∗
j , ..., µ

∗
m) ∈ Rm

+ such that
(x∗, µ∗) ∈ U × Rm

+ satisfies the KKT conditions associated with
problem (I).

If ∇f (x∗) = 0, then f (x) ≤ f (x∗) for all x ∈ U (because U is
open and f is pseudo-concave on U). Hence, f (x) ≤ f (x∗) for
all x ∈ U such that hj(x) ≤ 0 for all j = 1, ...,m. Further,
hj(x∗) ≤ 0 for all j = 1, ...,m. Then, x∗ solves problem (I).

Assume now that ∇f (x∗) 6= 0.

By contradiction, if x∗ is not a solution of problem (I), then
there is x ∈ U, x 6= x∗, such that hj(x) ≤ 0 for all j = 1, ...,m,
and f (x) > f (x∗). By pseudo-concavity of f , one gets :

∇f (x∗) · (x − x∗) > 0.
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Since hj is quasi-convex and hj(x) ≤ 0 = hj(x∗) for all j ∈ J(x∗),
we have that ∇hj(x∗) · (x − x∗) ≤ 0 for all j ∈ J(x∗). Then, we
get µ∗j ∇hj(x∗) · (x − x∗) ≤ 0 for all j ∈ J(x∗), because µ∗j ≥ 0.

If j /∈ J(x∗), then µ∗j = 0, because of complementary slackness.

Hence, we get :

µ∗j ∇hj(x∗) · (x − x∗) ≤ 0, ∀j = 1, ...,m.

Summing over j = 1, ...,m, we have :

m∑
j=1

µ∗j ∇hj(x∗) · (x − x∗) < ∇f (x∗) · (x − x∗).

That is impossible, because
∑m

j=1 µ
∗
j ∇hj(x∗) = ∇f (x∗). We

then conclude that x∗ must be a solution of problem (I).
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Sufficient conditions for uniqueness

Let U be an convex subset of Rn.

We provide below sufficient conditions for the uniqueness of the
solution of problem (I).

Proposition

Assume that the objective function f is striclty quasi-concave
and the constraint functions hj are quasi-convex for all
j = 1, ...,m. If problem (I) admits a solution x∗ ∈ U, then x∗ is
the unique solution.

The proof of this proposition is left as an exercise.
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(Useful) Mathematical digression 1

Farkas’ Lemma is a consequence of one of the Separation
Theorems, and it is often used in mathematical programming.

Let A = {a1, ...,aj , ...,am} be a set of m points of Rn.

K (A) denotes the set of all linear combinations of elements of A
with positive coefficients :

K (A) =

z =
m∑

j=1

µjaj ∈ Rn : µj ≥ 0 and aj ∈ A, ∀j = 1, ...,m

 .

That is, K (A) is the smallest (in the sense of inclusion) convex
cone of vertex 0 generated by a1, ...,aj , ...,am.
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Theorem (Farkas’ Lemma)

Let A = {a1, ...,aj , ...,am} be a set of m points of Rn. Consider
any point b ∈ Rn.

Then, only one of the following two alternatives holds true.

1 There exists µ = (µ1, ..., µj , ..., µm) ∈ Rm
+ such that :

b =
m∑

j=1

µjaj .

2 There exists p ∈ Rn with p 6= 0 such that :

p · b > 0 and p · aj ≤ 0, ∀ j = 1, ...,m.
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(Useful) Mathematical digression 2

Let U be an open and convex subset of Rn, f is a C1 on U.

Definition (Pseudo-concavity)
f is pseudo-concave on U if for all x and x in U with x 6= x ,

f (x) > f (x) =⇒ ∇f (x) · (x − x) > 0

A function g is pseudo-convex on U if and only if the function
f = −g is pseudo-concave on U.

Proposition
1 If f is concave on U, then f is pseudo-concave on U.
2 If f is quasi-concave on U and ∇f (x) 6= 0 for all x ∈ U,

then f is pseudo-concave on U.
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Mixed constraints

Let U be an open subset of Rn. From now on, the functions f ,
g1, . . . ,gi , . . . ,gp, and h1, . . . ,hj , . . . ,hm are C1 on U.

We consider the following maximization problem (M) that
includes both equality and inequality constraints.

(M)


max
x∈U

f (x)

gi(x) = 0, i = 1, . . .p
hj(x) ≤ 0, j = 1, . . . ,m

Consider x∗ ∈ U, as we have previously seen :

J(x∗) = {j = 1, ...,m : hj(x∗) = 0}, m∗ is the number of
elements of J(x∗), and h∗ = (hj)j∈J(x∗).

Also define the mapping g = (gi)i=1,...,p from U to Rp.
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KKT conditions with mixed constraints

The Karush-Kuhn-Tucker (KKT) conditions associated with the
maximization problem (M) are :

(KKT )


∇f (x) =

∑p
i=1 λi∇gi(x) +

∑m
j=1 µj∇hj(x),

∀i = 1, ...,p, gi(x) = 0,
∀j = 1, ...,m, µj ∈ R+ and hj(x) ≤ 0,
∀j = 1, ...,m, µjhj(x) = 0 (complementary slackness).

• λ = (λi)i=1,...,p ∈ Rp is the vector of Lagrange multipliers
associated with the equality constraints, and
• µ = (µj)j=1,...,m ∈ Rm

+ is the vector of Lagrange multipliers
associated with the inequality constraints.

Remark. Notice that λi is not required to be positive. This is
not surprising, because an equality constraint can be written as
two inequality constraints.
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KKT as necessary conditions with mixed constraints

As a consequence of the previous results, one gets the
following theorems.

Theorem
Let x∗ ∈ U be a solution of problem (M).
Assume that one of the following two conditions is satisfied.

1 The functions gi and hj are linear or affine for all
i = 1, ...,p and all j = 1, ...,m.

2 (Rank condition) All the gradients (∇gi(x∗))i=1,...,p and
(∇hj(x∗))j∈J(x∗) are linearly independent. That is,

rank
[

Dg(x∗)
Dh∗(x∗)

]
= p + m∗.

Then, there exist λ∗ = (λ∗i )i=1,...,p ∈ Rp and
µ∗ = (µ∗j )j=1,...,m ∈ Rm

+ such that (x∗, λ∗, µ∗) satisfies the KKT
conditions associated with problem (M).
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KKT as sufficient conditions with mixed constraints

Now U is an open and convex subset of Rn. We remind that
the functions f , g1, . . . ,gi , . . . ,gp, h1, . . . ,hj , . . . ,hm are C1 on U.

Theorem
If there exist λ∗ = (λ∗i )i=1,...,p ∈ Rp and µ∗ = (µ∗j )j=1,...,m ∈ Rm

+

such that (x∗, λ∗, µ∗) ∈ U × Rp × Rm
+ satisfies the KKT

conditions associated with problem (M), and and the
following condition (G) holds true, then x∗ is a solution of
problem (M).

Condition (G) : The function
L(x) = f (x)−

∑p
i=1 λ

∗gi(x)−
∑m

j=1 µ
∗
j hj(x) is concave in x.

25



Proposition
The previous theorem still holds true if Condition (G) is
replaced by one of the following two conditions.

1 The objective function f is concave, the functions gi are
linear or affine for all i = 1, ...,p, and the functions hj are
quasi-convex for all j = 1, ...,m.

2 The objective function f is quasi-concave with ∇f (x) 6= 0
for all x ∈ U, the functions gi are linear or affine for all
i = 1, ...,p, and the functions hj are quasi-convex for all
j = 1, ...,m.

26



Parameterized optimization problems

We now consider the following parameterized maximization
problem with equality constraints only.

Problem (Pr ) depends on some parameters
r = (r1, ..., r`, ..., rk ) ∈ Rk , because now the value of the
objective function and the values of the constraint functions
might change according to some parameters.

(Pr )

{
max
x∈U

f (x , r)

gi(x , r) = 0, i = 1, . . . ,p

The value of problem (Pr ) is denoted by v(r).
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Value function

Let r̄ = (r̄1, ..., r̄`, ..., r̄k ) ∈ Rk some reference parameters.

We assume that v(·) is a well-defined function around r̄ . That
is, there exists an open ball B ⊆ Rk of center r̄ such that for all
r ∈ B, problem (Pr ) has at least a solution.

For all r ∈ B, the value function is then defined as :

v(r) = max{f (x , r) : x ∈ S(r)},

where S(r) = {x ∈ U : gi(x , r) = 0,∀i = 1, . . . ,p} is the set
determined by the constraint functions of problem (Pr ).

We are interested in studying the marginal effects of changes
in r on the value function v .
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Assumption

We make the following assumption.

Assumption (A). There exist C1 mappings x(·) and λ(·)
defined in the open neighborhood B of r̄ , i.e.,

x : r ∈ B → x(r) = (x1(r), ..., xn(r)) ∈ Rn, and
λ : r ∈ B → λ(r) = (λ1(r), ..., λp(r)) ∈ Rp

such that for all r ∈ B :
1 x(r) is the unique solution of problem (Pr ), and

2 ∇x f (x(r), r)−
∑p

i=1 λi(r)∇xgi(x(r), r) = 0.
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A remark on the Implicit Function Theorem

Notice that Assumption (A) is an assumption on endogenous
variables. i.e., x ∈ U and λ ∈ Rp.

Nevertheless, Assumption (A) can be obtained as a
consequence of the Implicit Function Theorem.

Indeed, one can determine appropriate assumptions on the
objective function f and on the constraints function gi in such a
way that one can apply the Implicit Function Theorem to the
system of equations F (x , λ, r) = 0, where the mapping F is
given by :

F : (x , λ, r) ∈ U × Rp × B → F (x , λ, r) ∈ Rn × Rp,

with F (x , λ, r) = (D(x , λ, r),G(x , λ, r)) and{
D(x , λ, r) = ∇x f (x , r)−

∑p
i=1 λi∇xgi(x , r)

G(x , λ, r) = (g1(x , r), ...,gi(x , r), ...,gp(x , r))

30



The Envelope Theorem

For every r ∈ B, we have then v(r) = f (x(r), r).

Under Assumption (A), one gets the following Envelope
Theorem by using the chain rule.

Theorem
Assume that the objective function f and the constraint
functions g1, . . . ,gi , . . . ,gp are C2 on U.

If Assumption (A) is satisfied, then :

∇r v(r̄) = ∇r f (x(r̄), r̄)−
p∑

i=1

λi(r̄)∇r gi(x(r̄), r̄).

That is, for all ` = 1, ..., k :

∂v
∂r`

(r̄) =
∂f
∂r`

(x(r̄), r̄)−
∑p

i=1 λi(r̄)
∂gi

∂r`
(x(r̄), r̄).
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Two important remarks on the Envelope Theorem

Remark (1)
In the unconstrained case, i.e., we are in an open set with no
constraints at all, one gets :

∇r v(r̄) = ∇r f (x(r̄), r̄)

That is, for all ` = 1, ..., k :

∂v
∂r`

(r̄) =
∂f
∂r`

(x(r̄), r̄).
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In the second remark below, we consider the case where the
objective function f does not depend on the parameter r ,
i.e., f (x).

Remark (2)
If the number k of parameters equals the number p of equality
constraints, and for all i = 1, ...,p, the constraint functions are
additively separable as follows :

gi(x , r) = g̃i(x)− ri ,

then one gets :
∇r v(r̄) = λ(r̄)

That is, for all i = 1, ..., k :

∂v
∂ri

(r̄) = λi(r̄).
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Parameterized problems with inequality constraints

The previous analysis can be extended to the case of
inequality constraints. However, its extension is not a trivial
task.

Consider r = (r1, ..., rk , ..., r`) ∈ R` and the following
maximization problem (Ir ).

(Ir )

{
max
x∈U

f (x , r)

hj(x , r) ≤ 0, j = 1, . . . ,m

We write the Karush-Kuhn-Tucker conditions associated with
problem (Ir ).
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(KKT )r

{
1) ∇x f (x , r) =

∑m
j=1 µj∇xhj(x , r),

2) ∀j = 1, ...,m, µj ≥ 0, hj(x , r) ≤ 0 and µjhj(x , r) = 0

For all j = 1, ...,m, the conditions in item 2) translate in the
following equations :

min{µj ,−hj(x , r)} = 0.

Notice that the function min{µj ,−hj(x , r)} is not differentiable
everywhere.

This is because if x is on the boundary of constraint j , the
changes in parameters r can cause x to jump from the
boundary to the interior of constraint j .

35



Hence in the case of inequality constraints, Assumption (A)
must be adapted as follows.

Assumption (B). There exist C1 mappings x(·) and µ(·) defined
in an open neighborhood W of r̄ such that for all r ∈W :

1 x(r) is the unique solution of problem (Ir ).

2 hj(x(r), r) = 0 for all j ∈ J(x(r̄)) and hj(x(r), r) < 0 for all
j /∈ J(x(r̄)), i.e., J(x(r)) = J(x(r̄)).

3 ∇x f (x(r), r)−
∑

j∈J(x(r̄))

µj(r)∇xhj(x(r), r) = 0.

4 µj(r) > 0 for all j ∈ J(x(r̄)) and µj(r) = 0 for all j /∈ J(x(r̄)).
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For all r ∈W , the value function of problem (Pr ) is then
defined as :

v(r) = f (x(r), r)

Under Assumption (B) one gets an analogous result as the
previous Envelope Theorem.

Theorem
Assume that the objective function f and the constraint
functions h1, . . . ,hj , . . . ,hm are C2 on U. If Assumption (B) is
satisfied, then :

∇r v(r̄) = ∇r f (x(r̄), r̄)−
∑

j∈J(x(r̄))

µj(r̄)∇r hj(x(r̄), r̄).
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