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Inequality constraints

Let U be an open subset of R”. The functions f and
hy,... hj, ..., hy are defined on U.

We study the maximization problem (Z) with the following
inequality constraints (i.e., < 0).

{maxf(x)
()] xU
hi(x)<0,j=1,....,m

Remark. The simple adaptation of the following study to
minimization problems of a function a, or optimization problems
with inequality constraints described by the inequality ¢;(x) > 0
is left to the reader, by remarking that :

@ min a(x) = max f(x), with f(x) := —a(x).
@ c¢j(x) > 0ifand only if hi(x) < 0, with hj(x) := —cj(x).



Binding constraints

Let x* € U, we say that the constraint j is binding at x* if
hj(x*) = 0. We denote :

@ J(x*) the set of all binding constraints at x*, that is :
J(x*):={j=1,..,m: h(x*) =0},

@ m* < mthe number of elements of J(x*), and
Q h* := (hj)jeyx) is the following mapping :

h*:x € UCR" — h*(x) = (h(X))jeuix) € R™




Karush-Kuhn-Tucker (KKT) conditions

From nowon,fandh1,...,hj,...,hmareC1 on U.

KKT conditions associated with the maximization problem (Z) :

Vi=1,..,m, u € Ry and h;(x) <0,

Vi(X) = S 1V h(x),
(KKT)
Vj=1,...,m, ujhj(x) = 0 (complementary slackness).

That is, at x :

1) The gradient of the objective function is a linear combination
of the gradients of the constraint functions, with positive
coefficients p; > 0.

2) All the constraints are satisfied.

3) If ; > 0, then the constraint j is binding at x. If x belongs to
the interior of the constraint j (i.e., hj(x) < 0), then y; = 0.



Linearized problem

Let x* € U be a solution of problem (Z).

The main idea to prove that KKT conditions are necessary
conditions to solve problem (Z) is to replace problem (Z) with
the linearized problem (L*) :
. max VFf(x*) - (x — x*)
(£ ){

XERN
Vhi(x*)-(x —x*) <0, € J(x*)

Notice that what really matters in problem (£*) is the use of the
set J(x*) of binding constraints at x*.




Generalized constraint qualification condition

Definition

Let x* € U be a solution of problem (Z) such that h;(x*) = 0
for all j € J(x*). The generalized constraint qualification (GCQ)
condition is satisfied at x* if x* is also a solution of problem
(L*).

Remark that condition GCQ is not always satisfied.

One can easily find examples where x* € Sol(Z), but
x* ¢ Sol(L*).




Existence of Lagrange multipliers

Theorem
Assume that f and hy, ... h;,... hy areC' on U.

If x* € U is a solution of problem (Z) and x* satisfies condition
GCQ, then there exists p* = (u3, ..., T wh) € R such that
the vector (x*, i*) € U x R satisfies the KKT conditions
associated with problem (Z).




Sketch of the proof

If Vi(x*) =0, take pf =Oforall j=1,....,m.

Assume now that Vf(x*) # 0. Since x* solves problem (L£*),
there is no x # x* such that :

VI(x*) - (x —x*) >0 = VF(x*) (x* —x%),

and
Vhi(x*)-(x —x*) <0, Vj € J(x¥).

Take b = Vf(x*), and & = Vh;(x*) for all j € J(x*).




By Farkas’ Lemma, there exists p* = (M]’.‘)/-GJ(X*) € RT" such

that :
= Y ud

jed(x*)

For all j ¢ J(x*), take if = 0.

By construction, we get u}*hj(x*) =0forallj=1,....m,and
m
=D wVh(x*)
Jj=1

Further, hj(x*) <O0forallj=1,...,m, because x* is a solution
of problem (7).

Hence, (x*, u*) satisfies the KKT conditions associated with
problem (7). m



Sufficient conditions for generalized constraint

qualification

Assume that f and hy, ..., h;,... hy areC' on U.
QIf h; is linear or affine for all j = 1, ..., m, then condition
GCAQ is satisfied.

@ (Slater’s condition) Assume that U is also convex and :

e the constraint functions h; is convex for all j =1,...,m,
o there exists x € U such that hj(x) < 0 forallj=1,...,m.

Then, condition GCQ is satisfied.

© (Rank condition) I all the gradients (V hj(x*));cy(x) are
linearly independent, i.e., the rank of the Jacobian matrix
Dh*(x*) is equal to m* (full row rank), then condition GCQ

is satisfied.




Two remarks

Remark 1. In the Rank condition above, one easily recognizes
the classical constraint qualification condition given for
optimization problems with equality constraints.

Remark 2. In Slater’s condition, the convexity of h; can be
weakened by another assumption, that is, h; is pseudo-convex.

It is well know that :

@ A ' convex function is pseudo-convex.

@ A ' quasi-convex function, with gradient different from
zero everywhere, is pseudo-convex. Hence, in Slater’s
condition, the convexity of h; can be replaced with the
following assumption : h; is quasi-convex with Vh;(x) # 0
forall x € U.



KKT as necessary conditions

As a consequence of the previous two theorems one gets the
following theorem.

Theorem

Assume that f and hy, ..., h;, ... hy areC' on U.

Let x* € U be a solution of problem (Z).

Assume that one of the following three conditions is satisfied.
Q /fh; is linear or affine for allj =1, ..., m.

@ Slater’s condition.
© Rank condition.

Then, there exists i* = (u3, ..., s e wh) € R such that
(x*, ") € U x R satisfies the KKT conditions associated
with problem (Z).




KKT as sufficient conditions

Let U be an open and convex subset of R”".

Theorem

Assume that f and hy, ... h;,... , hy areC' on U.

If there exists p* = (u3, ..., 1f, .-, i) € R such that

(x*,u*) € U x R satisfies the KKT conditions associated
with problem (), and the following condition (C) holds true,
then x* is a solution of problem (T).

Condition (C) : The function L(x) = f(x) — Zj”; 1 hi(x) is
concave in x.




Let U be an open and convex subset of R”. Assume that f and
hi,....hj,...,hmare C' on U.

Proposition

The previous theorem still holds true if Condition (C) is
replaced by one of the following two conditions.

@ The objective function f is concave and the constraint
functions h; are quasi-convex for allj =1, ..., m.

@ The objective function f is quasi-concave with Vf(x) # 0
for all x € U, and the constraint functions h; are
quasi-convex forallj=1,...,m.

Hence, in order to check if KKT conditions are sufficient
conditions to solve problem (Z), we have to verify also some
properties of the objective function f.



Sketch of the proof

Without loss of generality, f is pseudo-concave on U.

Assume that there exists p* = (1], s B s i) € R such that
(x*, 1) € U x RT satisfies the KKT conditions associated with
problem (7).

If Vf(x*) =0, then f(x) < f(x*) for all x € U (because U is
open and f is pseudo-concave on U). Hence, f(x) < f(x*) for
all x € U such that hj(x) < O0forallj = 1,...,m. Further,
hi(x*) < 0Oforallj=1,...,m. Then, x* solves problem (T).

Assume now that Vf(x*) # 0.

By contradiction, if x* is not a solution of problem (Z), then
there is x € U, x # x*, such that hj(x) < Oforallj=1,...,m,
and f(x) > f(x*). By pseudo-concavity of f, one gets :

VIi(x*) - (x — x*) > 0.



Since h; is quasi-convex and h;(x) < 0 = h;(x*) for all j € J(x*),
we have that Vh;(x*) - (x — x*) < 0 for all j € J(x*). Then, we
get uj Vhi(x*) - (x — x*) < 0forall j € J(x*), because nif > 0.

Ifj ¢ J(x*), then nj = 0, because of complementary slackness.

Hence, we get :
pi Vhi(x*) - (x = x*) <0, Vj=1,

Summing over j =1, ..., m, we have :
m
D wIVh(x*) - (x = x*) < VI(X*) - (x = x7).
j=1

That is impossible, because > 1if Vh;(x*) = VF(x*). We
then conclude that x* must be a solution of problem (Z). m



Sufficient conditions for uniqueness

Let U be an convex subset of R".

We provide below sufficient conditions for the uniqueness of the
solution of problem (7).

Proposition

Assume that the objective function f is striclty quasi-concave
and the constraint functions h; are quasi-convex for all
j=1,...,m. If problem (Z) admits a solution x* € U, then x* is
the unique solution.

The proof of this proposition is left as an exercise.



(Useful) Mathematical digression 1

Farkas’ Lemma is a consequence of one of the Separation
Theorems, and it is often used in mathematical programming.

Let A={a',....d,...,am} be a set of m points of R”.

K(A) denotes the set of all linear combinations of elements of A
with positive coefficients :

m
K(A) = {zZujaieR”: pi>0and @ € A V) = 1,...,m}.
J=1

That is, K(A) is the smallest (in the sense of inclusion) convex
cone of vertex 0 generated by a', ..., &, ...,a™.



Theorem (Farkas’ Lemma)

LetA={a', ... d,.. a"} be asetof m points of R". Consider
any point b € R".

Then, only one of the following two alternatives holds true.

Q There exists ju = (1, .., f1j, -, km) € R such that :
m .
b= Z,uja’.
j=1

@ There exists p € R" with p # 0 such that :

p-b>0and p-a<0,Vj=1,..,m




(Useful) Mathematical digression 2

Let U be an open and convex subset of R”, fisa C' on U.

Definition (Pseudo-concavity)
f is pseudo-concave on U if for all x and X in U with x # X,

f(x) > f(X) = VF(X)- (x —X) > 0

A function g is pseudo-convex on U if and only if the function
f = —g is pseudo-concave on U.

Proposition

@ Iffis concave on U, then f is pseudo-concave on U.

@ Iff is quasi-concave on U and Vf(x) # 0 for all x € U,
then f is pseudo-concave on U.




Mixed constraints

Let U be an open subset of R”. From now on, the functions f,
91s--+Gir--- Gp,and hy,.... h;, ... hy are C' on U.

We consider the following maximization problem (M) that
includes both equality and inequality constraints.

max f(x)
xel

(M)q gi(x)=0,i=1,...p
hi(x)<0,j=1,....m

Consider x* € U, as we have previously seen :

J(x*)={j=1,..,m: hj(x*) = 0}, m* is the number of
elements of J(x*), and h* = (h})jcy(x-)-

Also define the mapping g = (gi)i=1,...p from U to RP.

.....



KKT conditions with mixed constraints

The Karush-Kuhn-Tucker (KKT) conditions associated with the
maximization problem (M) are :

VIH(x) = S04 MiVgi(x) + 24 1V hi(x),
Vi=1,..,p, gi(x) =0,

ety Vji=1,...,m, puj € Ry and hj(x) <0,
Vj=1,...,m, pjhj(x) = 0 (complementary slackness).

o A = (Aj)i=1,..p € RPis the vector of Lagrange multipliers
associated with the equality constraints, and

o 1t = (pj)j=1,..,m € R is the vector of Lagrange multipliers
associated with the inequality constraints.

Remark. Notice that ); is not required to be positive. This is
not surprising, because an equality constraint can be written as
two inequality constraints.



KKT as necessary conditions with mixed constraints

As a consequence of the previous results, one gets the
following theorems.

Theorem

Let x* € U be a solution of problem (M).
Assume that one of the following two conditions is satisfied.
@ The functions g; and h; are linear or affine for all
i=1,...,pandallj=1,...m.
@ (Rank condition) All the gradients (Vg;(x*))i-1...
(Vhi(x*))jeux+) are linearly independent. That is,
rank { g%fz(;z) } =p+m-.

Then, there exist \* = (X\})i=1,..p € RP and

*

-----

conditions associated with problem (M).

W= (uj),-:1 ..... m € R such that (x*, \*, u*) satisfies the KKT




KKT as sufficient conditions with mixed constraints

Now U is an open and convex subset of R". We remind that
the functions f, g4,...,8i,...,9ps h1,..., hj,... . hpm areC' on U.

Theorem

%
|

..........

such that (x*, \*, u*) € U x RP x R" satisfies the KKT
conditions associated with problem (M), and and the
following condition (G) holds true, then x* is a solution of
problem (M).

Condition (G) : The function
L(x) = f(x) = 74 A*gi(x) — X2y i hi(x) is concave in x.




The previous theorem still holds true if Condition (G) is
replaced by one of the following two conditions.

@ The objective function f is concave, the functions g; are
linear or affine for all i = 1, ..., p, and the functions h; are
quasi-convex forallj=1,...,m.

© The objective function f is quasi-concave with Vf(x) # 0
for all x € U, the functions g; are linear or affine for all
i=1,...,p, and the functions h; are quasi-convex for all
f=1,...m.




Parameterized optimization problems

We now consider the following parameterized maximization
problem with equality constraints only.

Problem (P,) depends on some parameters
r=(r,..,r,.. re) € R because now the value of the
objective function and the values of the constraint functions
might change according to some parameters.

max f(x,r)
(7),) xeu '
gi(x,r)=0,i=1,...,p

The value of problem (P;) is denoted by v(r).



Value function

Let7 = (F,...,Ts, ..., Tx) € RX some reference parameters.

We assume that v(-) is a well-defined function around r. That
is, there exists an open ball B C R¥ of center 7 such that for all
r € B, problem (P;) has at least a solution.

For all r € B, the value function is then defined as :
v(r) = max{f(x,r): x € S(r)},

where S(r) = {x € U: gi(x,r) =0,Vi=1,...,p} is the set
determined by the constraint functions of problem (7;).

We are interested in studying the marginal effects of changes
in r on the value function v.



We make the following assumption.

Assumption (A). There existC' mappings x(-) and \(-)
defined in the open neighborhood B of r, i.e.,

x:reB—x(r)=(xq(r),....xa(r)) € R", and
A:reB—= )= (A(r),....,\p(r)) €RP
such that forallr € B :
@ x(r) is the unique solution of problem (P;), and

Q@ V. f(x(r),r) = X84 A(r)Vxgi(x(r),r) = 0.




A remark on the Implicit Function Theorem

Notice that Assumption (A) is an assumption on endogenous
variables. i.e., x € U and \ € RP.

Nevertheless, Assumption (A) can be obtained as a
consequence of the Implicit Function Theorem.

Indeed, one can determine appropriate assumptions on the
objective function f and on the constraints function g; in such a
way that one can apply the Implicit Function Theorem to the
system of equations F(x, A, r) = 0, where the mapping F is
given by :

F:(x,\,r)e UxRP xB— F(x,\r) € R" xRP,
with F(x, A\, r) = (D(x, A, r), G(x, A, r)) and

{ DX, A, r) = Vf(x,7) — S0 AVgi(x, )
G(X7 ) ) (g1(X I’) 7gI(X r),...,gp(x, r))



The Envelope Theorem

For every r € B, we have then v(r) = f(x(r), r).

Under Assumption (A), one gets the following Envelope
Theorem by using the chain rule.

Theorem

Assume that the objective function f and the constraint
functions gy, ..., i, - -, gp are C2 on U.

If Assumption (A) is satisfied, then :

Vev(F) = Ve (X(7).7) = Y Mi(F)Vrgi(X(7), ).

Thatis, forall¢ =1,... .k :

v of ag; -
afrg(r) a,E(() r)— Z?M()ar( (), 7).




Two important remarks on the Envelope Theorem

Remark (1)
In the unconstrained case, i.e., we are in an open set with no

constraints at all, one gets :
Vv(r) =V, f(x(r),r)
Thatis, forall ¢ =1,... K :

ov _ of  _. _
%(r) = @(X(f% r).




In the second remark below, we consider the case where the
objective function f does not depend on the parameter r,
i.e., f(x).

Remark (2)

If the number k of parameters equals the number p of equality
constraints, and for all i = 1, ..., p, the constraint functions are
additively separable as follows :

gi(x,r) = gi(x) — 1,

then one gets :
Vv(F) = X(T)

Thatis, foralli=1,... Kk :




Parameterized problems with inequality constraints

The previous analysis can be extended to the case of
inequality constraints. However, its extension is not a trivial
task.

Consider r = (ry,..., I, ..., ;) € R® and the following
maximization problem (Z,).

) { max f(x,r)

hi(x,r)<0,j=1,....m

We write the Karush-Kuhn-Tucker conditions associated with
problem (Z;).



(KKT), { 1) Vxf(x,r) = S Vxhy(x.r),
2)Vj=1,...m, uj >0, hj(x,r) <0 and pihj(x,r) =0

For all j =1, ..., m, the conditions in item 2) translate in the
following equations :

min{uj, —hj(X, f)} =0.

Notice that the function min{x;, —h;(x, r)} is not differentiable
everywhere.

This is because if x is on the boundary of constraint j, the
changes in parameters r can cause x to jump from the
boundary to the interior of constraint j.



Hence in the case of inequality constraints, Assumption (A)
must be adapted as follows.

Assumption (B). There exist C' mappings x(-) and p(-) defined
in an open neighborhood W of r such that forallr ¢ W :

@ x(r) is the unique solution of problem (Z;).

Q@ hi(x(r),r) =0 forall j € J(x(F)) and hj(x(r),r) < 0 for all
j ¢ J(x(r)), i.e., J(x(r)) = J(x(T)).

Q Vif(x(r),r)— > w(r)Vxh(x(r),r) =0.

jed(x(r))

©Q (r) >0 forallj e J(x(r)) and pj(r) =0 for all j ¢ J(x(T)).




For all r € W, the value function of problem (P;) is then
defined as :
v(r) = f(x(r),r)

Under Assumption (B) one gets an analogous result as the
previous Envelope Theorem.

Theorem

Assume that the objective function f and the constraint
functions hy, ..., hj, ..., hy are C? on U. If Assumption (B) is
satisfied, then :

Vov(P) = VIAx(7),7) = Y w(AVh(x(F), F).
jeJ(x(P))




