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@ Finite Horizon Dynamic Programming
@ First order necessary and sufficient conditions
@ Bellman Equations

@ The consumption-savings problem : Euler Equations

@ An application




Some examples

Example (CS) : The consumption-savings problem. This
example is in Sundaram, R.K. (1999), A First Course in
Optimization Theory, Cambridge University Press.

A consumer faces a finite horizon planning. He has an initial
wealth w; > 0 at the beginning of each period t, and consumes
¢ > 0 that period.

The wealth at the beginning of the next period is :
W1 = (1 +r)(w; — ¢1),

where r > 0 is the interest rate.

The initial wealth wy > 0 is given and the final wealth is wr > 0.



The preferences at period t are represented by a utility function
u over the consumption at period t.

The consumer maximizes the sum of the utility levels u(c;) over
time t=0,..., T — 1. The finite horizon maximization problem
is then :

maxzz-;(; u(cr)

W1 = +r)(wi—c),fort=0,..., T —1
(CS) ¢t>0,fort=0,..., T —1

wi>0,fort=1,...,T




The general model

Periodst =0,1,..., T —1, T, where T is the finite horizon.
S is the state space, and A is the action space.

St € S denotes a state at period t, and a; € A denotes an
action (or control) at period't.

The initial state sy € S is given. The new state at period t + 1
is determined by a transition equation :

St+1 = gi(at, St).

fi(a:, st) € R is the payoff at period t associated with the
action-state pair (a:, st), and fr(sr) is the payoff at period T
associated with the terminal state st. The global payoff is the
discounted sum of the instantaneous payoffs with discount

factors 8 = (8o, -+ Bt, -+, BT—1, BT)-




Dynamic optimization problem

The finite horizon maximization problem is problem (D) below.

max ! Bifi(ar, st) + Brir(st)
St+1 = 9i(ar, st), t=0,..., T -1
acAit=0,...,T-1
St1€8,t=0,...,T -1

(D)

Remark. In this formulation, the payoff of the last period

does not depend on actions, i.e., fr(s7). In this case, fr is
called scrap value function, and it can be interpreted as a
measure of the net value associated with the terminal state.

Notice that, the case where the payoff of the last period also
depends on the action of the last period is covered by our
analysis. This is because one can obviously add a fictitious
period as terminal period, and a scrap value function that is
constantly equal to zero.



Feasible paths

We assume that :

@ the state space S is a subset of R, and the action space A
is a subset of R,

o forallt=0,..., T —1, the set A x Sis a subset of the
domains of f; and g;, and the state pace S is included in
the domain of fr.

For a given initial state sy, the set of feasible paths U(sy) is
the set of all <(at)tT:‘01 : (st)tT:1) e RT x R satisfying :

Q@ sicSforallt=1,...,T,ascAforallt=0,...,T -1,
@ the transition equations

St 41 :gf(at,st), t=0,...,T—1.




First order optimality conditions for “interior” solutions

Assume that for all t =0, ..., T, the state space S and the
action space A are open sets.

The objective function f of problem (D)is:

f<(at)t o (st 0) Zﬂtfr a, st) + Brir(sr).

t=0
Foreacht=0,..., T — 1, the equality constraint is :

Ye1(at, St St41) = Str1 — g(ar, St) = 0,
and \;, ¢ is the Lagrange multiplier associated with the

constraint function ~;¢,1. The Lagrangian function of the
problem is then :

(@) (s0Lo: MLy ) =

T-1

> Bifi(an st) + Brir(st) = > ArelSeer — grlar, sl
=0

~
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Assumption 1. Forallt =0,..., T — 1, the functions f; and g;
are C' on the open set A x S, and the function fr is C' on the
open set S.

Observe that the T gradients :

(v((at) (s )%‘H(at’st’st+1)>t:0,.‘.,T—1

are linearly independent. Indeed, it is enough to consider the
derivatives of the constraint functions (;41)¢=o,..., 7—1 With
respect to the T state variables (s)._,. One gets a square
matrix (with T rows and T columns) whose determinant is
equal to 1. Consequently, one has the following proposition on
first order necessary conditions.



Proposition

Let (at) ! be a solution of problem (D) with initial state

So = Sp- Let (s7)[_, be the associated sequence of states given
by the transition equat/ons St = oy, sf),t=0,..., T -1
Under Assumption 1, there exists a vector of Lagrange
multipliers X = (\1,...,\7) € RT such that :

Oty
'Btast,(ahst)+)‘t+1ast(at;3t) >\, t=1,...,T -1

(FOC)

BriZ(sy) = Ar,

Sti1 =gi(af,sf), t=0,...,T -1
Notice that :

a) The initial state sy = sj is not an endogenous variable of
(FOC), but a parameter.

b) Forallt=1,..., T — 1, the state s; appears in both
constraint functions ~; and ¢ 1.



Sufficient conditions for optimality

Assumption 2. The Lagrangian function is concave in

(@) (s074)-

Proposition

/N
N———

Under Assumptions 1 and 2, if ( (a;)] 0 ,(st) _o ) satisfies the
first order condition (FOC) given in the previous proposition,
then ((at)t o (SHL 1) is a solution of problem (D) with initial
state s;.

Notice that the propositions above apply only if the solution of
problem (D) belongs to the interior of the sets of actions and
states. Also remark that the number of equations of system
(FOC) increases with the number of periods.



Introduction to the Bellman principle

In this section, the state space S and the action space A are
not necessarily open sets. Further, the functions f; and g; are
not required to be C'.

Fix aperiod t < T — 1 and a state s; € S.

Consider the following truncated problem (D;) with initial
state s; and periods r=1¢,..., T .

max 37! B..(a,, ;) + Brfr(st)
S$;11=9-(ar,s:), 7r=1t...,T -1
acAr=t....,T-1
S;r1€S,7=t,...,T—1

(Dt)




Let (at)t o be a solution of problem (D) with initial state
So =Sy € S.

Let (s})[_, be the associated sequence of states given by the
transition equatlons Si.q = gi(ay,sf)forallt=0,..., T —1.

Then, (a:)]. j is a solution of the truncated problem (D;)
with initial state s; = s;.

That is, the optimal path that starts at period t only depends on
the state s;, and it does not depend on the previous
action-state pairs (at, s¥) with = < t.




The Bellman equations

Forallt=0,...,T —1andforall s; € S, define the set ®4(s;)
of all the feasible actions at state s;, i.e.,

®(st) = {ar € A: gi(ar, st) € S}

Forallt=0,...,T —1, let Vi(s;) be the value function of
problem (D) with initial state s; € S.

Then, one gets the Bellman equations, i.e., for all
t=0,...,T—1:

@ Vi(st) = max{B:ifi(at, st) + Vir1(gi(ar, St)) | ar € ®(st)},
and aj is a solution of the maximization problem above.

® Vr(gr-1(ar—1,s7-1)) = Brfr(gr-1(ar—1,87-1)), with
ST =gr-1(ar-1,87-1) € S.




Dynamic programming algorithm

The Bellman equations are very useful to construct the
solutions of problem (D).

Step 1. The payoff at period T is Srfr(sr). Hence,
Vr(gr—1(ar—1,87-1)) = Brir(9r-1(ar—1, st—1)), with
st =gr-1(ar—1,87-1) € S.

Step 2. At period T — 1, we solve the following maximization
problem with initial state s;_1 € S:

{ max Sr_1fr_1(ar—1,s7-1) + Brir(gr-1(ar—1,87-1))
ar_1 € dr_q1(sr_1)

This is a one dimensional problem where the only variable
is the action ar_;. We then determine the set of optimal
actions o%_,(s7_1) and the value function Vr_4(s7_1) of the
problem above.



Dynamic programming algorithm continued

Step 3. At period T — 2, we solve the following maximization
problem with initial state s7_» € S, where the only variable is
the action ar_» :

{ max B1_ofr_o(a@r—2,S1-2) + Vr_1(97-2(ar—2,s7-2))
ar_p € ®1_o(s7_2)

to get the set of optimal actions a%_,(s7_2) and the value
function Vr_o(s7_2) of the problem above.

We continue to work backwards until the final step that allows
to compute the set of optimal actions «o(sp) and the value
function Vo(sp).

Remark. At each step, the set of optimal solutions «a;(s¢) might
be a singleton, meaning that the maximization problem
max{Stfi(at, st) + Vir1(gi(at, st)) | ar € ®¢(st)} has a unique
solution.



The algorithm provides then the solutions of problem (D) with
initial state sp, by piking actions in the sets of optimal solutions
and using the following recursive formula :

@ aj € op(So),
o ST = g()(az;7 SO) and aT S OlT(gO(aEk)v SO))’

OVI’:1,...,T—2:

s?—H = gf(a}k7 S;k) and a?+1 S 04;.1 (gt(a}kv S?))’

® st =gr-1(ar_y,57_1)




The consumption-savings problem

Consider the consumption-savings problem presented in
Example (CS) :

maxZ:tT:_o1 u(ct)

Wiy =1 +r)(w—c),fort=0,...., 7T -1
(CS) ¢t >0,fort=0,...,T -1

Wi >0,fort=0,...,T -1

Following the general formulation of problem (D), the state at
period t is the wealth w;, the action at period t is the
consumption ¢, and 5y =1forallt=0,..., T —1.




Karush-Kuhn-Tucker (KKT) conditions

Assume that the utility function v is differentiable and concave
on the open set R . Further, v/(c) > 0 for all ¢ > 0 (this
implies that v is strictly increasing on R, ).

We now focus on solutions where forall t < T — 1, the
action-state pairs are in the interior of the sets of actions and
states. Thatis, ¢; >0and w;y >0forallt=0,...,T -1, and
wo = wy > 0.

Foreacht=0,...,T —1, A\;;1 € Ris the Lagrange multiplier
associated with the equality constraint :

Wit —(1+r)(wi—c) =0,

and 1 > 0 is the Lagrange multiplier associated with the
following inequality constraint :

—wr <0.



We get then the following Karush-Kuhn-Tucker necessary and
sufficient conditions.

u(cy) = Ap1(1+r),fort=0,..., T -1
AM=Ap1(1+r),fort=1,.... T -1

wi =0 +nWw —c¢)fort=0,..., T -1
wy >0, A\t >0,and A\rw; =0

(KKT)cs

Observe that the condition u7 — A7 = 0 entails A\t = u7 > 0.

Hence, the Lagrange multiplier ;.7 (associated with the
inequality constraint —wy < 0) does not appear in the above
conditions, but it provides important information on the sign of
the Lagrange multiplier At.




Analysis of the sign of the Lagrange multipliers

If w; > 0, then Ay = 0. Consequently, all the Lagrange
multipliers are equal to 0, because :

)\t:)\t+1(1 +r), vi=1,...,T —1.

But, this is impossible, because v'(¢f) > 0forall t < T — 1.

Hence, it must be that w3 = 0 and A7 > 0. Consequently, the
above equalities imply that :

A >0, VE=1,..., T—1.




Euler Equations

Hence we can eliminate the Lagrange multipliers to obtain the
following Euler equations from system (KKT)¢s.

u'(ct)=(1+nu(cq), Vt=0,...,T -2 J

We have then T — 1 equations and T — 1 unknowns (c})/_2,
because c;_; = wy_, is uniquely determined by the transition

equation 0 = (1 + r)(wy_, — ¢%_,), since w; = 0.

The remaining consumption solutions ¢, ¢f, ..., c_, are
completely determined by the Euler equations.

Using the transition equations, one obtains then all the optimal
levels of wealth, provided that the initial wealth is sufficiently
large to allow for strictly positive optimal consumptions.



An application

Consider the consumption-savings problem with T =2, r =0
and u(c) = c.

The initial wealth wy > 0 is given.

max 3> /Gt

Wi = (W — ¢¢), fort = 0,1
¢t >0,fort=0,1
w;>0,fort=1,2

©)

In order to determine the solution of problem (C), we apply the
two methods that we have studied above. We first use the
Bellman principle. We then use the Euler equations. The
solution is obviously the same.



First methodology : Bellman Equations

The state space is S = R, and the action space is A = R,.
For all t = 0,1, and for every wealth w; > 0, the set of feasible
actions is y(w;) = { ¢t € Ry: (wy —¢t) > 0} = [0, wy].

Step 1. The payoff at period T = 2 is constantly equal to zero,
i.e., ib(wz) = 0 for all wo. Then, at period T = 2, the value at
wo = (wq — ¢1) with wp € R is given by Vo((wy —¢q)) = 0.

Step 2. At period T — 1 = 1, we solve the following problem :

e

C € [0, W1]

We obtain this problem from Bellman equations, because
Bifi(cr, wy) + Vo((wy — ¢q)) = /€1, and the set of feasible
actions is ®1(wy) = [0, wq].



The solution of the above problem is ¢; = wy, and then the
value function is Vi(wy) = /wy.

Step 3. At period T — 2 = 0, we solve the following problem :
{ max,/Co + /(Wp — Cop)
Co € [0, wo]

We obtain this problem from Bellman equations, because

Bofo(Co, Wo) + Vi((Wo — Co)) = v/Co + +/(Wo — Co), and the set

of feasible actions is (W) = [0, wy].

, , W
The solution of the above problem is ¢y = ?0
Thus, the solution of problem (C) is (c3, ¢}, wy, w;) where :
Wo Wo . Wo
* * * *
° co_?,and Wi = 5 since wi =wo — Gy =Wo — 5

wo .
® i = ?0 since c¢; = wy, and w; = 0, because
Wy = wy — ¢y = Wy — wy.



Second methodology : Euler Equations

Since T = 2, we have only one Euler equation, i.e.,
u'(cg) = u'(cy), that entails the first equation of the system
below.

Further, we have already proved that it must be w; = 0.

Thus, ¢j > 0, ¢ > 0 and wy > 0 are determined by the
following system :

1 1
2,/c;  2,/c
wi—-cy=0
Wo — Cy = Wy

Hence, we have that ¢; = ¢; = w;". From the last equation of
« _ Wo « _ o M
the above system, one gets w; = > and then ¢; = ¢f = >



