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Some examples

Example (CS) : The consumption-savings problem. This
example is in Sundaram, R.K. (1999), A First Course in
Optimization Theory, Cambridge University Press.

A consumer faces a finite horizon planning. He has an initial
wealth wt ≥ 0 at the beginning of each period t , and consumes
ct ≥ 0 that period.

The wealth at the beginning of the next period is :

wt+1 = (1 + r)(wt − ct ),

where r ≥ 0 is the interest rate.

The initial wealth w0 > 0 is given and the final wealth is wT ≥ 0.
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The preferences at period t are represented by a utility function
u over the consumption at period t .

The consumer maximizes the sum of the utility levels u(ct ) over
time t = 0, . . . ,T − 1. The finite horizon maximization problem
is then :

(CS)


max

∑T−1
t=0 u(ct )

wt+1 = (1 + r)(wt − ct ), for t = 0, . . . ,T − 1
ct ≥ 0, for t = 0, . . . ,T − 1
wt ≥ 0, for t = 1, . . . ,T
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The general model

Periods t = 0,1, . . . ,T − 1,T , where T is the finite horizon.

S is the state space, and A is the action space.

st ∈ S denotes a state at period t, and at ∈ A denotes an
action (or control) at period t.

The initial state s0 ∈ S is given. The new state at period t + 1
is determined by a transition equation :

st+1 = gt (at , st ).

ft (at , st ) ∈ R is the payoff at period t associated with the
action-state pair (at , st ), and fT (sT ) is the payoff at period T
associated with the terminal state sT . The global payoff is the
discounted sum of the instantaneous payoffs with discount
factors β = (β0, ..., βt , ..., βT−1, βT ).
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Dynamic optimization problem

The finite horizon maximization problem is problem (D) below.

(D)


max

∑T−1
t=0 βt ft (at , st ) + βT fT (sT )

st+1 = gt (at , st ), t = 0, . . . ,T − 1
at ∈ A, t = 0, . . . ,T − 1
st+1 ∈ S, t = 0, . . . ,T − 1

Remark. In this formulation, the payoff of the last period
does not depend on actions, i.e., fT (sT ). In this case, fT is
called scrap value function, and it can be interpreted as a
measure of the net value associated with the terminal state.

Notice that, the case where the payoff of the last period also
depends on the action of the last period is covered by our
analysis. This is because one can obviously add a fictitious
period as terminal period, and a scrap value function that is
constantly equal to zero.
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Feasible paths

We assume that :
the state space S is a subset of R, and the action space A
is a subset of R,

for all t = 0, . . . ,T − 1, the set A× S is a subset of the
domains of ft and gt , and the state pace S is included in
the domain of fT .

For a given initial state s0, the set of feasible paths U(s0) is
the set of all

(
(at )

T−1
t=0 , (st )

T
t=1

)
∈ RT × RT satisfying :

1 st ∈ S for all t = 1, . . . ,T , at ∈ A for all t = 0, . . . ,T − 1,
2 the transition equations

st+1 = gt (at , st ), t = 0, . . . ,T − 1.
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First order optimality conditions for “interior” solutions

Assume that for all t = 0, . . . ,T , the state space S and the
action space A are open sets.

The objective function f of problem (D) is :

f
(

(at )
T−1
t=0 , (st )

T
t=0

)
=

T−1∑
t=0

βt ft (at , st ) + βT fT (sT ).

For each t = 0, . . . ,T − 1, the equality constraint is :

γt+1(at , st , st+1) = st+1 − gt (at , st ) = 0,

and λt+1 is the Lagrange multiplier associated with the
constraint function γt+1. The Lagrangian function of the
problem is then :

L(
(

(at )
T−1
t=0 , (st )

T
t=0, (λt )

T
t=1

)
=

T−1∑
t=0

βt ft (at , st ) + βT fT (sT )−
T−1∑
t=0

λt+1[st+1 − gt (at , st )].
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Assumptions

Assumption 1. For all t = 0, . . . ,T − 1, the functions ft and gt
are C1 on the open set A× S, and the function fT is C1 on the
open set S.

Observe that the T gradients :(
∇

((at )
T−1
t=0 ,(st )

T
t=1)

γt+1(at , st , st+1)
)

t=0,...,T−1

are linearly independent. Indeed, it is enough to consider the
derivatives of the constraint functions (γt+1)t=0,...,T−1 with
respect to the T state variables (st )

T
t=1. One gets a square

matrix (with T rows and T columns) whose determinant is
equal to 1. Consequently, one has the following proposition on
first order necessary conditions.
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Proposition

Let (a∗t )T−1
t=0 be a solution of problem (D) with initial state

s0 = s∗0. Let (s∗t )T
t=1 be the associated sequence of states given

by the transition equations : s∗t+1 = gt (a∗t , s
∗
t ), t = 0, . . . ,T − 1.

Under Assumption 1, there exists a vector of Lagrange
multipliers λ = (λ1, . . . , λT ) ∈ RT such that :

(FOC)


βt

∂ft
∂at

(a∗t , s
∗
t ) + λt+1

∂gt
∂at

(a∗t , s
∗
t ) = 0, t = 0, . . . ,T − 1

βt
∂ft
∂st

(a∗t , s
∗
t ) + λt+1

∂gt
∂st

(a∗t , s
∗
t ) = λt , t = 1, . . . ,T − 1

βT
∂fT
∂sT

(s∗T ) = λT ,

s∗t+1 = gt (a∗t , s
∗
t ), t = 0, . . . ,T − 1

Notice that :
a) The initial state s0 = s∗0 is not an endogenous variable of
(FOC), but a parameter.
b) For all t = 1, . . . ,T − 1, the state st appears in both
constraint functions γt and γt+1.
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Sufficient conditions for optimality

Assumption 2. The Lagrangian function is concave in(
(at )

T−1
t=0 , (st )

T
t=1

)
.

Proposition

Under Assumptions 1 and 2, if
(

(a∗t )T−1
t=0 , (s

∗
t )T

t=0

)
satisfies the

first order condition (FOC) given in the previous proposition,
then

(
(a∗t )T−1

t=0 , (s
∗
t )T

t=1

)
is a solution of problem (D) with initial

state s∗0.

Notice that the propositions above apply only if the solution of
problem (D) belongs to the interior of the sets of actions and
states. Also remark that the number of equations of system
(FOC) increases with the number of periods.
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Introduction to the Bellman principle

In this section, the state space S and the action space A are
not necessarily open sets. Further, the functions ft and gt are
not required to be C1.

Fix a period t ≤ T − 1 and a state st ∈ S.

Consider the following truncated problem (Dt ) with initial
state st and periods τ = t , . . . ,T .

(Dt )


max

∑T−1
τ=t βτ fτ (aτ , sτ ) + βT fT (sT )

sτ+1 = gτ (aτ , sτ ), τ = t , . . . ,T − 1
aτ ∈ A, τ = t , . . . ,T − 1
sτ+1 ∈ S, τ = t , . . . ,T − 1
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Let (a∗t )T−1
t=0 be a solution of problem (D) with initial state

s0 = s∗0 ∈ S.

Let (s∗t )T
t=1 be the associated sequence of states given by the

transition equations s∗t+1 = gt (a∗t , s
∗
t ) for all t = 0, . . . ,T − 1.

Then, (a∗τ )T−1
τ=t is a solution of the truncated problem (Dt )

with initial state st = s∗t .

That is, the optimal path that starts at period t only depends on
the state s∗t , and it does not depend on the previous
action-state pairs (a∗τ , s∗τ ) with τ < t .
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The Bellman equations

For all t = 0, . . . ,T − 1 and for all st ∈ S, define the set Φt (st )
of all the feasible actions at state st , i.e.,

Φt (st ) = {at ∈ A : gt (at , st ) ∈ S}.

For all t = 0, . . . ,T − 1, let Vt (st ) be the value function of
problem (Dt ) with initial state st ∈ S.

Then, one gets the Bellman equations, i.e., for all
t = 0, . . . ,T − 1 :

Vt (st ) = max{βt ft (at , st ) + Vt+1(gt (at , st )) | at ∈ Φt (st )},

and a∗t is a solution of the maximization problem above.

VT (gT−1(aT−1, sT−1)) = βT fT (gT−1(aT−1, sT−1)), with
sT = gT−1(aT−1, sT−1) ∈ S.
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Dynamic programming algorithm

The Bellman equations are very useful to construct the
solutions of problem (D).

Step 1. The payoff at period T is βT fT (sT ). Hence,
VT (gT−1(aT−1, sT−1)) = βT fT (gT−1(aT−1, sT−1)), with
sT = gT−1(aT−1, sT−1) ∈ S.

Step 2. At period T − 1, we solve the following maximization
problem with initial state sT−1 ∈ S :{

max βT−1fT−1(aT−1, sT−1) + βT fT (gT−1(aT−1, sT−1))
aT−1 ∈ ΦT−1(sT−1)

This is a one dimensional problem where the only variable
is the action aT−1. We then determine the set of optimal
actions α∗T−1(sT−1) and the value function VT−1(sT−1) of the
problem above.
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Dynamic programming algorithm continued

Step 3. At period T − 2, we solve the following maximization
problem with initial state sT−2 ∈ S, where the only variable is
the action aT−2 :{

max βT−2fT−2(aT−2, sT−2) + VT−1(gT−2(aT−2, sT−2))
aT−2 ∈ ΦT−2(sT−2)

to get the set of optimal actions α∗T−2(sT−2) and the value
function VT−2(sT−2) of the problem above.

We continue to work backwards until the final step that allows
to compute the set of optimal actions α∗0(s0) and the value
function V0(s0).

Remark. At each step, the set of optimal solutions α∗t (st ) might
be a singleton, meaning that the maximization problem
max{βt ft (at , st ) + Vt+1(gt (at , st )) | at ∈ Φt (st )} has a unique
solution.

16



The algorithm provides then the solutions of problem (D) with
initial state s0, by piking actions in the sets of optimal solutions
and using the following recursive formula :

a∗0 ∈ α∗0(s0),

s∗1 = g0(a∗0, s0) and a∗1 ∈ α∗1(g0(a∗0, s0)),

∀t = 1, ...,T − 2 :

s∗t+1 = gt (a∗t , s
∗
t ) and a∗t+1 ∈ α∗t+1(gt (a∗t , s

∗
t )),

s∗T = gT−1(a∗T−1, s
∗
T−1).
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The consumption-savings problem

Consider the consumption-savings problem presented in
Example (CS) :

(CS)


max

∑T−1
t=0 u(ct )

wt+1 = (1 + r)(wt − ct ), for t = 0, . . . ,T − 1
ct ≥ 0, for t = 0, . . . ,T − 1
wt+1 ≥ 0, for t = 0, . . . ,T − 1

Following the general formulation of problem (D), the state at
period t is the wealth wt , the action at period t is the
consumption ct , and βt = 1 for all t = 0, . . . ,T − 1.
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Karush-Kuhn-Tucker (KKT) conditions

Assume that the utility function u is differentiable and concave
on the open set R++. Further, u′(c) > 0 for all c > 0 (this
implies that u is strictly increasing on R++).

We now focus on solutions where for all t ≤ T − 1, the
action-state pairs are in the interior of the sets of actions and
states. That is, c∗t > 0 and w∗t > 0 for all t = 0, . . . ,T − 1, and
w0 = w∗0 > 0.

For each t = 0, . . . ,T − 1, λt+1 ∈ R is the Lagrange multiplier
associated with the equality constraint :

wt+1 − (1 + r)(wt − ct ) = 0,

and µT ≥ 0 is the Lagrange multiplier associated with the
following inequality constraint :

−wT ≤ 0.
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We get then the following Karush-Kuhn-Tucker necessary and
sufficient conditions.

(KKT )CS


u′(c∗t ) = λt+1(1 + r), for t = 0, . . . ,T − 1
λt = λt+1(1 + r), for t = 1, . . . ,T − 1
w∗t+1 = (1 + r)(w∗t − c∗t ), for t = 0, . . . ,T − 1
w∗T ≥ 0, λT ≥ 0, and λT w∗T = 0

Observe that the condition µT − λT = 0 entails λT = µT ≥ 0.

Hence, the Lagrange multiplier µT (associated with the
inequality constraint −wT ≤ 0) does not appear in the above
conditions, but it provides important information on the sign of
the Lagrange multiplier λT .
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Analysis of the sign of the Lagrange multipliers

If w∗T > 0, then λT = 0. Consequently, all the Lagrange
multipliers are equal to 0, because :

λt = λt+1(1 + r), ∀t = 1, . . . ,T − 1.

But, this is impossible, because u′(c∗t ) > 0 for all t ≤ T − 1.

Hence, it must be that w∗T = 0 and λT > 0. Consequently, the
above equalities imply that :

λt > 0, ∀t = 1, . . . ,T − 1.
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Euler Equations

Hence we can eliminate the Lagrange multipliers to obtain the
following Euler equations from system (KKT )CS.

u′(c∗t ) = (1 + r)u′(c∗t+1), ∀t = 0, . . . ,T − 2

We have then T − 1 equations and T − 1 unknowns (c∗t )T−2
t=0 ,

because c∗T−1 = w∗T−1 is uniquely determined by the transition
equation 0 = (1 + r)(w∗T−1 − c∗T−1), since w∗T = 0.

The remaining consumption solutions c∗0, c
∗
1, ..., c

∗
T−2 are

completely determined by the Euler equations.

Using the transition equations, one obtains then all the optimal
levels of wealth, provided that the initial wealth is sufficiently
large to allow for strictly positive optimal consumptions.
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An application

Consider the consumption-savings problem with T = 2, r = 0
and u(c) =

√
c.

The initial wealth w0 > 0 is given.

(C)


max

∑1
t=0
√

ct
wt+1 = (wt − ct ), for t = 0,1
ct ≥ 0, for t = 0,1
wt ≥ 0, for t = 1,2

In order to determine the solution of problem (C), we apply the
two methods that we have studied above. We first use the
Bellman principle. We then use the Euler equations. The
solution is obviously the same.
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First methodology : Bellman Equations

The state space is S = R+, and the action space is A = R+.
For all t = 0,1, and for every wealth wt ≥ 0, the set of feasible
actions is Φt (wt ) = { ct ∈ R+ : (wt − ct ) ≥ 0} = [0,wt ].

Step 1. The payoff at period T = 2 is constantly equal to zero,
i.e., f2(w2) = 0 for all w2. Then, at period T = 2, the value at
w2 = (w1 − c1) with w2 ∈ R+ is given by V2((w1 − c1)) = 0.

Step 2. At period T − 1 = 1, we solve the following problem :{
max
√

c1
c1 ∈ [0,w1]

We obtain this problem from Bellman equations, because
β1f1(c1,w1) + V2((w1 − c1)) =

√
c1, and the set of feasible

actions is Φ1(w1) = [0,w1].
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The solution of the above problem is c1 = w1, and then the
value function is V1(w1) =

√
w1.

Step 3. At period T − 2 = 0, we solve the following problem :{
max
√

c0 +
√

(w0 − c0)
c0 ∈ [0,w0]

We obtain this problem from Bellman equations, because
β0f0(c0,w0) + V1((w0 − c0)) =

√
c0 +

√
(w0 − c0), and the set

of feasible actions is Φ0(w0) = [0,w0].

The solution of the above problem is c0 =
w0

2
.

Thus, the solution of problem (C) is (c∗0, c
∗
1,w

∗
1 ,w

∗
2 ) where :

c∗0 =
w0

2
, and w∗1 =

w0

2
since w∗1 = w0 − c∗0 = w0 −

w0

2
.

c∗1 =
w0

2
since c∗1 = w∗1 , and w∗2 = 0, because

w∗2 = w∗1 − c∗1 = w∗1 − w∗1 .
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Second methodology : Euler Equations

Since T = 2, we have only one Euler equation, i.e.,
u′(c∗0) = u′(c∗1), that entails the first equation of the system
below.

Further, we have already proved that it must be w∗2 = 0.

Thus, c∗0 > 0, c∗1 > 0 and w∗1 > 0 are determined by the
following system : 

1
2
√

c∗0
=

1
2
√

c∗1
w∗1 − c∗1 = 0
w0 − c∗0 = w∗1

Hence, we have that c∗0 = c∗1 = w∗1 . From the last equation of

the above system, one gets w∗1 =
w0

2
, and then c∗0 = c∗1 =

w0

2
.
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