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Macroeconomics : An example

Example (M) : Macroeconomics. The following example is a
discrete time version of the well-known Ramsey model, which is
usually formalized in continuous time (see, for instance, Cass,
D., Review of Economic Studies 32, 1965).

The following example can be found in Le Van, C., and Dana,
R.-A. (2003), Dynamic Programming in Economics, Kluwer
Academic Publishers.

At each period t = 0,1, . . . ,+∞, kt ∈ R+ is the per capita
capital stock, and ct ∈ R+ is the per capita consumption.

The initial per capita stock k0 > 0 is given. F is a production
function, and the allocation between consumption at period t
and investment for the next period t + 1 is given by :

kt+1 = F (kt)− ct .
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The agent (for instance, a social planner) maximizes the
intertemporal welfare, which is represented by a discounted
sum of utility levels u(ct).

βt is the discount factor at period t , and it measures the rate at
which the agent discounts time t ’s preferences for the present.

The infinite horizon maximization problem is :

(R)


max

∑∞
t=0 β

tu(ct)
kt+1 = F (kt)− ct , t = 0,1, . . . ,+∞
ct ≥ 0, kt ≥ 0, t = 0,1, . . . ,+∞

The basic assumptions on the above model are as follows.

4



1 β ∈ ]0,1[. The utility function u is a continuous function
from R+ to R+ with u(0) = 0. The utility function u is C2 on
R++, strictly concave and strictly increasing on R+ with
u′(c) > 0 for all c > 0, and it satisfies the Inada condition :

lim
c→0

u′(c) = +∞

2 The production function F is a continuous function from R+

to R+ with F (0) = 0. The production function F is C2 on
R++, strictly concave and strictly increasing on R+ with
F ′(k) > 0 for all k > 0, and it satisfies the following
conditions :

lim
k→0

F ′(k) = M > 0 or +∞, and lim
k→+∞

F ′(k) < 1
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Stationary optimization problem

We study dynamic optimization problems with discrete time
over an infinite horizon :

t = 0,1, . . . ,+∞.

We focus on stationary optimization problems. That is,
infinite horizon dynamic optimization problems, where the
payoff functions ft and the functions gt that determine the
transition equations are independent of time, i.e.,

ft = f and gt = g, ∀ t = 0,1, . . . ,+∞

For all t = 0,1, . . . ,+∞, the state space is S, and the action
space is A.
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The discount factor at period t is βt where β ∈ ]0,1[.

Then, the stationary optimization problem is :

(D)


max

∑∞
t=0 β

t f (at , st)
st+1 = g(at , st), t = 0,1, . . . ,+∞
at ∈ A, t = 0,1, . . . ,+∞
st ∈ S, t = 0,1, . . . ,+∞

The initial state s0 is given, and the set of feasible paths is :

U(s0) = {(at , st)t∈N | ∀t ∈ N, st+1 = g(at , st) and (at , st) ∈ A×S}.

V (s0) denotes the value of the above problem for the initial
state s0, i.e.,

V (s0) = sup{
∑∞

t=0 β
t f (at , st) : (at , st)t∈N ∈ U(s0)}.
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Boundedness Condition

Assumption S (Boundedness Condition) There exists a real
number K such that |f (a, s)| ≤ K for all (a, s) ∈ A× S.

Notice that if the set A× S is compact and the function f is
continuous on A× S, then Assumption S is satisfied.

Let I ⊆ R be the set of feasible initial states.

Assumption S implies that the value V (s0) of problem (D) is
finite for all feasible initial states s0 ∈ I, since β ∈ ]0,1[.

That is, V is a well defined function from I to R, even if an
optimal solution of problem (D) might not exist.
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A stronger assumption on the problem

Let A(s0) be the set of feasible actions a0 at state s0, i.e.,

A(s0) = {a0 ∈ A : g(a0, s0) ∈ S}.

The following conditions are sufficient for ensuring that
Assumption S holds true locally around feasible paths.

Assumption B There exist an interval I ⊆ R and ε > 0, such
that for all s0 ∈ I :

a) For all a0 ∈ A(s0), g(a0, s0) ∈ I.
b) The set A(s0) is compact.
c) U(s0) ⊆

∏
t∈N B(0, ε).

d) The functions f and g are continuous.
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Assumption B also ensures that :

1 the set U(s0) is compact,
2 the function

∑∞
t=0 β

t f (at , st) is well defined and continuous
on U(s0).

Hence, by Weierstrass Theorem, problem (D) has at least a
solution (we come back on this topic in Slides 5).

From now on, without loss of generality, V is well defined on
some interval I ⊆ R and it is the value function of problem (D).

That is, for all s0 ∈ I, V (s0) ∈ R and

V (s0) = max{
∑∞

t=0 β
t f (at , st) : (at , st)t∈N ∈ U(s0)}.
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Bellman Equation with infinite horizon

Proposition
The value function V satisfies the Bellman equation. That is,
for all s0 ∈ I :

V (s0) = max{f (a0, s0) + βV (g(a0, s0)) | a0 ∈ A(s0)},

where A(s0) is the set of feasible actions a0 at state s0.

The Bellman equation is a functional equation, where the value
function V is the unknown. We come back on this issue in
Slides 5.

11



From the Bellman equation, one checks that the optimal action
at period t can be computed as a solution of the following
maximization problem :

max{f (at , st) + βV (g(at , st)) | at ∈ A(st)},

where A(st) is the set of feasible actions at at state st , i.e.,

A(st) = {at ∈ A : g(at , st) ∈ S}.

Since f and g are independent of time, the Bellman equation
can be written without the time subscript. That is, for all s ∈ I :

V (s) = max{f (a, s) + βV (g(a, s)) | a ∈ A(s)}. (1)

Remark that it does not mean that the solution of problem (D)
is independent of time, because the maximization problem in
(1) might have several solutions.
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Stationary optimal solution

Assume that for all s ∈ I, the maximization problem :

max{f (a, s) + βV (g(a, s)) | a ∈ A(s)}

has a unique solution α∗(s). Define the following function :

σ : s ∈ I → σ(s) = g(α∗(s), s) ∈ S

If s∗ is a fixed point of the function σ, i.e., σ(s∗) = s∗, then the
sequence (α∗(s∗), s∗) is a stationary optimal solution of
problem (D) with initial state s0 = s∗, that is :

α∗(s∗t ) = α∗(s∗τ ), ∀(t , τ) ∈ N× N, and s∗t = s∗, ∀t ∈ N.
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The truncated problem at period T

Let (a∗t , s
∗
t )t∈N be an optimal solution of problem (D) for the

initial state s0 = s∗0.

Consider T ≥ 2 and the following truncated problem of
problem (D), where the variable are (at)

T−1
t=0 and (st)

T−1
t=1 .

(PT )


max

∑T−1
t=0 βt f (at , st) +

∑∞
t=T β

t f (a∗t , s
∗
t )

st+1 = g(at , st), t = 0, . . . ,T − 2
s∗T = g(aT−1, sT−1),
(at , st) ∈ A× S, t = 0, . . . ,T − 1

Then, the truncated sequence ((a∗t )
T−1
t=0 , (s

∗
t )

T−1
t=1 ) is a solution

of problem (PT ) with initial state s0 = s∗0, for all T = 2, . . . ,+∞.
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First order conditions (FOC) for “interior” solutions

The open set Int(A× S) denotes the interior of the set A× S.

Let (a∗t , s
∗
t )t∈N be an optimal solution of problem (D) for the

initial state s0 = s∗0, such that (a∗t , s
∗
t ) ∈ Int(A× S) and

s∗t+1 = g (a∗t , s
∗
t ) for all t ∈ N.

We make the following assumptions to use first order conditions
(FOC), that are necessary and sufficient to solve the truncated
problems (PT ).

Assumption A.

1) The functions f and g are C1 on Int(A× S).

2) The functions f and g are concave on
Int(A× S).
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Euler equations with infinite horizon

Under Assumption A, we obtain then the following Euler
equations.

Assume that the partial derivatives of f and g with respect to
the action are different from 0 on Int(A× S), i.e. :

(E) ∂f
∂at

(a∗t , s
∗
t ) 6= 0 and ∂g

∂at
(a∗t , s

∗
t ) 6= 0, ∀ t = 0,1, . . . ,+∞.

Then, the following Euler equation holds true for all
t = 0,1, . . . ,+∞.

βt+1 ∂f
∂st+1

(a∗t+1, s
∗
t+1) =

βt+1
∂f

∂at+1
(a∗

t+1,s
∗
t+1)

∂g
∂at+1

(a∗
t+1,s

∗
t+1)

∂g
∂st+1

(a∗t+1, s
∗
t+1)− βt

∂f
∂at

(a∗
t ,s

∗
t )

∂g
∂at

(a∗
t ,s

∗
t )

Further, s∗t+1 = g (a∗t , s
∗
t ), for all t = 0,1, . . . ,+∞.
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The Euler equations can be proved using first order conditions
(FOC) associated with problems (PT ) with T ≥ 2.

We illustrate the proof for T = 2. It is an easy matter to use the
same arguments for every T = n + 2 with n ∈ N.

Consider FOC associated with problem (P2). That is :
(t=0) ∂f

∂a0
(a∗0, s

∗
0) = − λ1

∂g
∂a0

(a∗0, s
∗
0)

(t=1) β ∂f
∂a1

(a∗1, s
∗
1) = − λ2

∂g
∂a1

(a∗1, s
∗
1)

(t=1) β ∂f
∂s1

(a∗1, s
∗
1) = λ1 − λ2

∂g
∂s1

(a∗1, s
∗
1)

From (E), the Lagrange multipliers λ1 6= 0 and λ2 6= 0 are
completely determined by the first two equations. Hence, it is
enough to replace λ1 and λ2 in the third equation to obtain :

β ∂f
∂s1

(a∗1, s
∗
1) = β

∂f
∂a1

(a∗
1 ,s

∗
1 )

∂g
∂a1

(a∗
1 ,s

∗
1 )

∂g
∂s1

(a∗1, s
∗
1)−

∂f
∂a0

(a∗
0 ,s

∗
0 )

∂g
∂a0

(a∗
0 ,s

∗
0 )

Then, the Euler equation holds true for t = 0.
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Two applications

1. Consider the macroeconomic model given in Example (M).

The Euler equations for interior solutions become :

βu′(c∗t+1)F
′(k∗t+1) = u′(c∗t ), ∀ t = 0,1, . . . ,+∞.

Further, k∗t+1 = F (k∗t )− c∗t for all t = 0,1, . . . ,+∞.

Remark that in this example, the utility function u is
independent of the state variable. That is, the derivative of u
with respect to the state variable is equal to zero :

∂u
∂kt+1

(c∗t+1, k
∗
t+1) = 0, ∀ t = 0,1, . . . ,+∞
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2. We consider the consumption-savings model in Slides 3, and
we extend its analysis to an infinite horizon.

(CS)


max

∑∞
t=0 β

tu(ct)
wt+1 = (wt − ct), for t = 0, . . . ,∞
ct ≥ 0, for t = 0, . . . ,∞
wt ≥ 0, for t = 1, . . . ,∞

In this framework, β ∈ ]0,1[, u is C1 on R++, strictly increasing,
strictly concave, and u satisfies the Inada condition.

Euler equations translate in :

βu′(c∗t+1) = u′(c∗t ), ∀t = 0,1, . . . ,+∞.

Further, w∗t+1 = (w∗t − c∗t ) for all t = 0,1, . . . ,+∞.
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Properties of the value function

We now come back to some important properties of the value
function. We assume that it is well defined on some interval
I ⊆ R, that is :

V : s0 ∈ I → V (s0) ∈ R

Proposition
Assume that :

1) The sets A and S are convex.
2) If s ∈ S and s̃ ≥ s, then s̃ ∈ S.
3) The functions f and g are concave on A× S
and increasing with respect to the state variable.

Then the value function V is concave on its interval I of
definition, and consequently, the value function V is
continuous on the interior of this interval.
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Differentiability of the value function

Theorem
Assume the same assumptions that ensure the concavity of
the value function. Further, assume that the functions f and g
are C1 on a neighborhood of (a∗0, s

∗
0) and ∂g

∂a (a
∗
0, s
∗
0) 6= 0.

Then, the value function V is differentiable at s∗0 and :

V ′(s∗0) = −
∂f
∂a

(a∗0, s
∗
0)

∂g
∂s (a

∗
0, s
∗
0)

∂g
∂a (a

∗
0, s
∗
0)

+
∂f
∂s

(a∗0, s
∗
0)
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