

Midterm Exam (1 hour and 30 minutes)

Read and think before you write, and try to be both concise and precise

Exercise 1 (30 minutes). Draw the indifferences curves in \mathbb{R}^2 of the following preferences.

1. Linear preferences such that for all $x_1 = (x_{11}, x_{12})$ and $x_2 = (x_{21}, x_{22})$, one has

$$x_1 \succ x_2 \Leftrightarrow x_{11} + x_{12} > x_{21} + x_{22}$$

2. Cobb-Douglas preferences such that for all $x_1 = (x_{11}, x_{12})$ and $x_2 = (x_{21}, x_{22})$, one has

$$x_1 \succ x_2 \Leftrightarrow x_{11}x_{12} > x_{21}x_{22}$$

3. Give three examples of utility functions representing the preferences considered in 2.

1. See class notes
2. See class notes
3. We know that if $f : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is an increasing function that u and $f \circ u$ represent the same preferences; Applying this property to (for example):

- $f(y) = \log(y)$ one gets $v(x_1, x_2) = \log(x_1) + \log(x_2)$
- $g(y) = y^2$ one gets $w(x_1, x_2) = x_1^2 x_2^2$
- $h(y) = \sqrt{y}$ one gets $w(x_1, x_2) = \sqrt{x_1 x_2}$

Exercise 2 (30 minutes). Determine the demand functions associated with the following utility functions

- The utility $u : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ such that

$$u(x_1, \dots, x_n) := \prod_{i=1}^n x_i^{\alpha_i}$$

where $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}_+^n$ is a fixed vector of parameters

- The utility $v : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ such that

$$v(x_1, \dots, x_n) := \min\left(\frac{x_1}{a_1}, \dots, \frac{x_n}{a_n}\right)$$

where $a = (a, \dots, a) \in \mathbb{R}_{++}^n$ is a fixed vector of parameters

- The utility $w : \mathbb{R}_+^n \rightarrow \mathbb{R}_+$ such that

$$w(x_1, \dots, x_n) := \sum_{i=1}^n a_i x_i$$

where $a = (a_1, \dots, a_n) \in \mathbb{R}_{++}^n$ is a fixed vector of parameters

1. See handwritten notes...

2.

Exercise 3 (30 minutes).

1. What is a rational preference relation ?
2. Give an exemple of non-rational preference relation.
3. Give an exemple of consumption set and preference relation so that no two bundles are indifferent (i.e indifferences curves are points).
4. Let us consider a preference relation on $Y = \{a_1, \dots, a_n\}$ such that $a_1 \succ a_2 \succ \dots \succ a_n$. Give a utility function representing \succ .
 1. A rational preference relation is a relation that is complete and transitive
 2. Consider $X = \{A, B, C\}$ the preference relation on X defined by $A \succ B \succ C \succ A$ is non rational because it is non-transitive.
 3. Lexicographic preferences (see class notes)
 4. One can set form example $u(a_i) = -i$, one then has $u(a_i) \geq u(a_j) \Leftrightarrow i \leq j \Leftrightarrow a_i \succeq a_j$

1. One can remark that if $x_i = 0$ for at least one i then $u(x) = 0$. Thus, unless $w = 0$, one must have $\alpha_i = 1 \dots n \quad x_i > 0$. Thus the problem of the consumer can be written as:

$$\text{max } \prod_{i=1}^n x_i^{\alpha_i}$$

$$\text{s.t. } x_i \leq w$$

where the budget constraint is an equality because the utility is ~~strictly~~ monotonic. First-order conditions then give that $\exists \lambda \in \mathbb{R}$ such that for all $i = 1 \dots n$, one has at an optimal x :

$$\frac{x_i}{\bar{x}_i} \prod_{i=1}^n x_i^{\alpha_i} = \lambda p_i \Leftrightarrow \frac{\alpha_i}{\bar{\alpha}_i} \prod_{i=1}^n x_i^{\alpha_i} = \lambda p_i x_i$$

Thus for all i , one has

$$\frac{p_1 x_1}{p_i x_i} = \frac{\alpha_1}{\alpha_i} \Rightarrow p_i x_i = \frac{\alpha_i}{\alpha_1} p_1 x_1$$

$$\text{Now } \sum p_i x_i = w, \text{ and thus } \frac{\sum \alpha_i}{\alpha_1} p_1 x_1 = w$$

$$\Rightarrow x_1 = \frac{\alpha_1}{\sum \alpha_i} \frac{w}{p_1}$$

$$\text{and likewise } x_j = \frac{\alpha_j}{\sum \alpha_i} \frac{w}{p_j}$$

2) It is straightforward to show (see lecture notes) that at an optimum, one must have for all j :

$$\frac{\partial c_j}{\alpha_j} = \frac{\partial c_1}{\alpha_1} \Rightarrow x_j = \frac{\alpha_j}{\alpha_1} x_1$$

Using the monotonicity of the utility function, one further has $\sum p_i x_i = 1$

and thus $\sum p_i \alpha_i \frac{x_1}{\alpha_1} = w$

hence $x_1 = \frac{\alpha_1 w}{\sum p_i \alpha_i}$

and likewise $x_j = \frac{\alpha_j w}{\sum p_i \alpha_i}$

3) As above, the utility is function is (strictly) increasing and ~~thus~~ one must have $\sum p_i x_i = w$

The level of utility per unit of ~~consumption~~ spending is constant for each good and equal to $\frac{\alpha_i}{p_i}$

One can only consume goods j such that

$$\frac{\alpha_j}{p_j} = \max_{i=1 \dots n} \frac{\alpha_i}{p_i}$$

and eventually one gets:

$$d(p, w) = \left\{ (l_1, l_2, \dots, l_n) \mid \begin{array}{l} l_j > 0 \Leftrightarrow \frac{\alpha_j}{p_j} = \max_{i=1 \dots n} \frac{\alpha_i}{p_i} \\ \sum l_j p_j = w \end{array} \right\}$$