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1 Some one-variable optimization problems

Exercise 1 Find the solution(s) of the following maximization problems, when
it exists, and compute the values of these three problems.

(P1)

{
max
√
x+ 2

√
c− x

x ∈ [0, c]

where c is a positive real number.

(P2)

{
maxx2 + 2(c− x)
x ∈ [0, c]

where c is a positive real number.

(P3)

{
max ax− ex
x ∈ R

where a is a positive real number.
∗The following exercises are borrowed from the textbook: Further Mathematics for Economic

Analysis, by Sydsaeter K., Hammmond P., Seierstadt A., Strom A. (2005), hereafter SHSS.
Exercises 1, 35, 38, 40, and 41 are borrowed from the previous teacher.

†Université Paris 1 Panthéon Sorbonne, Centre d’Economie de la Sorbonne and Paris School
of Economics.
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2 Unconstrained optimization

Exercise 2 (SHSS 3.1, 4) Find the functions x∗(r) and y∗(r) such that x =
x∗(r) and y = y∗(r) solve the problem:

max
x,y

f(x, y, r) = −x2 − xy − 2y2 + 2rx+ 2ry

where r is a parameter.

Exercise 3 (SHSS 3.1, 5) Find the solutions x∗(r, s) and y∗(r, s) of the problem

max
x,y

f(x, y, r, s) = r2x+ 3s2y − x2 − 8y2

where r and s are parameters.

Exercise 4 (SHSS 3.2, 1) The function

f(x1, x2, x3) = x21 + x22 + 3x23 − x1x2 + 2x1x3 + x2x3

defined on R3 has only one stationary point. Show that it is a local minimum
point.

Exercise 5 (SHSS 3.2, 2) Let f be defined for all (x, y) ∈ R2 by

f(x, y) = x3 + y3 − 3xy

1. Show that (0, 0) and (1, 1) are the only stationary points of f , and compute
the quadratic form associated with the Hessian matrix of f at the stationary
points.

2. Check the definiteness of this quadratic form at the stationary points.

3. Classify the stationary points, local minimum, local maximum, saddle point.

Exercise 6 (SHSS 3.2, 3) Classify the stationary points of

(a) f(x, y, z) = x2 + x2y + y2z + z2 − 4z

(b) f(x1, x2, x3, x4) = 20x2 + 48x3 + 6x4 + 8x1x2 − 4x21 − 12x23 − x24 − 4x32

Exercise 7 (SHSS 3.2, 4) Suppose f(x, y) has only one stationary point (x∗, y∗)
which is a local minimum point. Is (x∗, y∗) necessarily a global minimum point?
It may be surprising that the answer is no. Prove this by examining the function
defined for all (x, y) ∈ R2 by f(x, y) = (1 + y)3x2 + y2. (Hint: Look at f(x,−2)
as x→∞.)
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3 Optimization with equality constraints

Exercise 8 (SHSS 3.3, 1)

1. Solve the problem: max−x2 − y2 − z2 subject to x + 2y + z = a, where a
is a parameter.

2. Compute the value function f ∗(a) and verify that the derivative of the value
function is equal to the Lagrange multiplier.

Exercise 9 (SHSS 3.3, 2)

1. Solve the problem:

maxx+ 4y + z subject to x2 + y2 + z2 = 216 and x+ 2y + 3z = 0

2. Change the first constraint to x2+y2+z2 = 215 and the second to x+2y+
3z = 0.1. Estimate the corresponding change in the maximum value by
using that the partial derivatives of the value function equal the Lagrange
multipliers.

Exercise 10 (SHSS 3.3, 3)

1. Solve the problem:

max ex + y + z subject to
{
x+ y + z = 1
x2 + y2 + z2 = 1

2. Replace the constraints by x+ y+ z = 1.02 and x2 + y2 + z2 = 0.98. What
is the approximate change in optimal value of the objective function?

Exercise 11 (SHSS 3.3, 4)

1. Solve the following utility maximizing problem, assuming m ≥ 4.

maxU(x1, x2) =
1
2
ln(1 + x1) +

1
4
ln(1 + x2) subject to 2x1 + 3x2 = m

2. With U∗(m) as indirect utility function, show that dU∗/dm = λ.

Exercise 12 (SHSS 3.3, 5)

1. Solve the problem: max 1− rx2 − y2 subject to x+ y = m, with r > 0.

2. Find the value function f ∗(r,m). Compute ∂f ∗/∂r and ∂f ∗/∂m and verify
that they are equal to the partial derivatives of the Lagrangian ∂L/∂r and
∂L/∂m (respectively) computed at the solution.

Exercise 13 (SHSS 3.3, 6)

1. Solve the problem:

maxx2 + y2 + z2 subject to x2 + y2 + 4z2 = 1 and x+ 3y + 2z = 0
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2. Suppose we change the first constraint to x2 + y2 + 4z2 = 1.05 and the
second constraint to x+3y+2z = 0.05. Estimate the corresponding change
in the value function.

Exercise 14 (SHSS 3.3, 7) Let x = (x1, ..., xj, ..., xn) ∈ Rn.

1. Let U(x) =
∑n

j=1 αj ln(xj − aj), where αj, aj, pj, and m are all positive
constants with

∑n
j=1 αj = 1, and with m >

∑n
i=1 piai. Consider the price

system p = (p1, ..., pj, ..., pn) and show that if x∗ solves:

maxU(x) subject to p · x = m, xj ≥ 0, j = 1, 2, . . . , n,

then the expenditure on good j is the following linear function of prices and
income

pjx
∗
j = αjm+ pjaj − αj

∑n
i=1 piai, j = 1, 2, . . . , n.

2. Let U∗(p,m) = U(x∗) denote the indirect utility function. Verify Roy’s
identity, i.e.,

∂U∗

∂pi
=
∂L
∂pi

= −λx∗i , i = 1, . . . , n

Exercise 15 (SHSS 3.3, 8)

1. Find the solution of the following problem by solving the constraints for x
and y:

minimize x2 + (y − 1)2 + z2 subject to x+ y =
√
2 and x2 + y2 = 1

2. Note that there are three variables and two constraints (the variable z does
not appear in the constraints). Show that the constraint qualification
condition is not satisfied, and that there are no Lagrange multipliers for
which the Lagrangian is stationary at the solution point.

Exercise 16 (SHSS 3.3, 10) Consider the problem:

maxx,r f(x, r) subject to
{
gj(x, r) = 0, j = 1, . . . ,m
ri = bm+i, i = 1, . . . , k

where f and g1, . . . , gm are given functions and bm+1, . . . , bm+k are fixed pa-
rameters. (We maximize f w.r.t. both x = (x1, . . . , xn) and r = (r1, . . . , rk), but
with r1, . . . , rk completely fixed.) Define b̃ = (0, . . . , 0, bm+1, . . . , bm+k) (there are
m zeros). Prove that the partial derivative of the value function with respect to
ri is equal to the partial derivative of the Lagrangian with respect to ri computed
at the solution for i = m + 1, . . . ,m + k by using the fact that the multiplier
equals the partial derivative of the value function and those first order condition
for the optimization problem that refer to the variables ri.

Exercise 17 (SHSS 3.4, 1)

1. Find the four points that satisfy the first order conditions for the problem:

max(min)x2 + y2 subject to 4x2 + 2y2 = 4
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2. Compute the bordered Hessian determinant B2(x, y) of order 2 at the four
points found in (1). What can you conclude?

3. Can you give a geometric interpretation of the problem?

Exercise 18 (SHSS 3.4, 2) Compute the bordered Hessian determinants B2

and B3 of order 2 and 3 for the problem:

max (min) x2 + y2 + z2 subject to x+ y + z = 1.

Show that the second order conditions for a local minimum are satisfied.

Exercise 19 (SHSS 3.4, 3) Use the sufficient conditions on the bordered Hes-
sian determinants to classify the candidates for optimality in the problem:

local max (min) x+ y + z subject to x2 + y2 + z2 = 1 and x− y − z = 1

4 Optimization with inequality constraints

Exercise 20 (SHSS 3.5, 2)

1. Consider the nonlinear programming problem (where c is a positive con-
stant):

max ln(x+ 1) + ln(y + 1) subject to
{
x+ 2y ≤ c
x+ y ≤ 2

Write down the necessary Kuhn-Tucker conditions for a point (x, y) to be
a solution of the problem.

2. Solve the problem for c = 5/2.

3. Let V (c) denote the value function. Find the value of V ′(5/2).

Exercise 21 (SHSS 3.5, 3) Solve the following problem (assuming it has a
solution): min 4 ln(x2 + 2) + y2 subject to x2 + y ≥ 2, x ≥ 1.
(Hint: Reformulate it as a standard Kuhn-Tucker maximization problem.)

Exercise 22 (SHSS 3.5, 4) Solve the problem: max−(x−a)2−(y−b)2 subject
to x ≤ 1, y ≤ 2, for all possible values of the constants a and b. (A good check
of the results is to use a geometric interpretation of the problem).

Exercise 23 (SHSS 3.5, 6)
(a) Find the only possible solution to the nonlinear programming problem:

maxx5 − y3 subject to x ≤ 1, x ≤ y

(b) Solve the problem by using iterated optimization. That is, find first the
maximum value f(x) in the problem of maximizing x5 − y3 subject to x ≤ y,
where x is fixed and y varies. Then maximize f(x) subject to x ≤ 1.
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Exercise 24 (SHSS 3.6, 2) Solve the problem:

maxxy + x+ y subject to x2 + y2 ≤ 2, x+ y ≤ 1.

Exercise 25 (SHSS 3.7, 1)
(a) Solve the nonlinear programming problem (a and b are constants):

max 100− e−x − e−y − e−z subject to x+ y + z ≤ a, x ≤ b

(b) Let f ∗(a, b) be the (optimal) value function. Compute the partial deriva-
tives of f ∗ with respect to a and b, and relate them to the Lagrange multipliers.

(c) Put b = 0, and show that F ∗(a) = f ∗(a, 0) is concave in a.

Exercise 26 (SHSS 3.7, 3)

1. Consider the problem:

max(min)x2 + y2 subject to r2 ≤ 2x2 + 4y2 ≤ s2

where 0 < r < s. Solve the maximization problem and verify the Envelope
Theorem in this case.

2. Can you give a geometric interpretation of the problem and its solution?

Exercise 27 (SHSS 3.8, 2) Solve the following nonlinear programming prob-
lems:

(a) maxxy subject to x+ 2y ≤ 2, x ≥ 0, y ≥ 0

(b) maxxαyβ subject to x + 2y ≤ 2, x > 0, y > 0, where α > 0 and β > 0,
and α + β ≤ 1.

Exercise 28 (SHSS 3.8, 3)
(a) Solve the following problem for all values of the constant c:

max f(x, y) = cx+ y subject to g(x, y) = x2 + 3y2 ≤ 2 ≤ 2, x ≥ 0, y ≥ 0

(b) Let f ∗(c) denote the value function. Verify that it is continuous. Check if
the Envelope Theorem holds true.

Exercise 29 (SHSS 3.8, 5) A model for studying the export of gas from Russia
to the rest of Europe involves the following optimization problem:

max[x+y− 1

2
(x+y)2− 1

4
x− 1

3
y] subject to x ≤ 5, y ≤ 3,−x+2y ≤ 2, x ≥ 0, y ≥ 0

Sketch the admissible set S in the xy-plane, and show that the maximum cannot
occur at an interior point of S. Solve the problem.
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5 Finite horizon dynamic programming

Exercise 30 (SHSS 12.1, 1)
(a) Solve the problem:

max
2∑
t=0

[1− (x2t + 2u2t )], xt+1 = xt − ut, t = 0, 1 (1)

where x0 = 5 and ut ∈ R. (Compute Js(x) and u∗s(x) for s = 2, 1, 0).

(b) Use the difference equation xt+1 = xt − ut to compute x1 and x2 in terms
of u0 and u1 (with x0 = 5), and find the sum in (1) as a function S of u0, u1, and
u2. Next, maximize this function as in Example 2, Section 12.1 of SHSS.

Exercise 31 (SHSS 12.1, 2) Consider the problem:

max
ut∈[0,1]

T∑
t=0

(
1

1 + r

)t√
utxt, xt+1 = ρ(1− ut)xt, t = 0, 1, . . . , T − 1, x0 > 0

where r is the rate of discount. Compute Js(x) and u∗s(x) for s = T, T − 1, T − 2.

Exercise 32 (SHSS 12.1, 4) Consider the problem:

max
ut∈[0,1]

T∑
t=0

(3− ut)x2t , xt+1 = utxt, t = 0, 1, . . . , T − 1, x0 is given

(a) Compute the value functions JT (x), JT−1(x), JT−2(x), and the correspond-
ing control function u∗T (x), u∗T−1(x) and u∗T−2(x).

(b) Find an expression for JT−n(x) for n = 0, 1, . . . , T , and the corresponding
optimal controls.

Exercise 33 (SHSS 12.1, 5) Solve the problem:

max
ut∈[0,1]

T−1∑
t=0

(
−2

3
ut

)
+ lnxT , xt+1 = xt(1 + ut), t = 0, 1, . . . , T − 1, x0 > 0 given

Exercise 34 (SHSS 12.1, 7)
(a) Consider the problem:

max
ut∈R

T−1∑
t=0

(
−e−γut

)
− αe−γxT , xt+1 = 2xt − ut, t = 0, 1, . . . , T − 1, x0 given

where α and γ are positive constants. Compute JT (x), JT−1(x), and JT−2(x).

(b) Prove that Jt(x) written in the form Jt(x) = −αte−γx, and find a difference
equation for αt.
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Exercise 35 Compute the solution of the following problem when u(c) =
√
c

and u(c) = ln(c). 
max u(c1) + βu(c2)
c2 = (1 + r)(w0 − c1)
c1 ≥ 0, c2 ≥ 0

where w0 > 0 is given.

6 Stationary dynamic programming

Exercise 36 (SHSS 12.3, 1) Consider the problem:

max
ut∈R

∞∑
t=0

βt
(
−e−ut − 1

2
e−xt

)
, xt+1 = 2xt − ut, t = 0, 1, . . . , x0 given

where β ∈ ]0, 1[. Find a constant α > 0 such that J(x) = −αe−x solves the
Bellman equation, and show that α is unique.

Exercise 37 (SHSS 12.3, 2)

(a) Consider the following problem with β ∈ ]0, 1[:

max
ut∈R

∞∑
t=0

βt
(
−2

3
x2t − u2t

)
, xt+1 = xt + ut, t = 0, 1, . . . , x0 given

Suppose that J(x) = −αx2 solves the Bellman equation. Find a quadratic equa-
tion for α. Then find the associated value of u∗.

(b) By looking at the objective function, show that, given any starting value
x0, it is reasonable to ignore any policy that fails to satisfy both |xt| ≤ |xt−1| and
|ut| ≤ |xt−1| for t = 1, 2, . . .

Exercise 38 Consider the following macroeconomic model.1

(R)


max

∑∞
t=0 β

tu(ct)
kt+1 = F (kt)− ct, t = 0, 1, . . . ,+∞
ct ≥ 0, kt ≥ 0, t = 0, 1, . . . ,+∞

with k0 > 0. The basic assumptions are as follows.

1. β ∈ ]0, 1[, u is a continuous function from R+ to R+ with u(0) = 0, u is C2
on R++, strictly concave and strictly increasing on R+ with u′(c) > 0 for
all c > 0, and u satisfies the following Inada condition:

lim
c→0

u′(c) = +∞
1This example can be found in Le Van, C., and Dana, R.-A. (2003), Dynamic Programming

in Economics, Kluwer Academic Publishers.
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2. The production function F is a continuous function from R+ to R+ with
F (0) = 0, F is C2 on R++, strictly concave and strictly increasing on R+

with F ′(k) > 0 for all k > 0, and F satisfies the following conditions:

lim
k→0

F ′(k) =M > 0 or +∞, and lim
k→+∞

F ′(k) < 1

(a) Write the first order necessary conditions for any interior solution (c∗t , k
∗
t ),

that is c∗t > 0 and k∗t > 0 for all t.

(b) Deduce the following Euler equations from the first order conditions above.

βu′(c∗t+1)F
′(k∗t+1) = u′(c∗t )

(c) Show that an optimal solution is always an interior solution as a consequence
of the Inada condition u′(0) = +∞.

Exercise 39 Consider the stationary optimization problem:

(D)


max

∑∞
t=0 β

tf(at, st)
st+1 = g(at, st), t = 0, 1, . . . ,+∞
at ∈ A, t = 0, 1, . . . ,+∞
st ∈ S, t = 0, 1, . . . ,+∞

Assume that the value function V of problem (D) is a well defined function on
some interval I ⊆ S. Prove that V is concave on I if the following three properties
holds true.

(i) The sets A ⊆ R and S ⊆ R are convex.

(ii) If s ∈ S and s̃ ≥ s, then s̃ ∈ S.

(iii) The functions f and g are concave on A× S and increasing with respect to
the state variable s.

Exercise 40 Consider the macroeconomic model and the maximization problem
(R) given in Exercise 38.

(a) Verify that the above three properties (i), (ii), and (iii) are satisfied.

(b) Show that, at an interior solution, one gets:

V ′(k∗0) = u′(c∗0)F
′(k∗0)

Exercise 41 (Steady state) We consider the Bellman equation and we denote
α(s0) the optimal solution given s0. A fixed point s∗ of g(α(·), ·) is called a steady
state. Show that if s0 = s∗, then the optimal solution of the problem is the
constant sequence (α(s∗), s∗)t∈N.
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