Université Paris 1 Panthéon Sorbonne
Exam M2 MMMEF, 2022-2023

Exam: Calibration in quantitative finance
14th March 2023

- Documents and cell phone are prohibited.
- The duration of the exam is $\mathbf{2 h 0 0}$.
- It is forbidden to leave without returning the copy of your exam sheet.
- The exam is composed of 2 exercices which can be treated independently. In an exercise, you can use the results from the previous questions.

Exercice 1 (Questions on the lectures ($\mathbf{7} \mathbf{~ p t s}$))

1. (2 pts) Prove the two following non-arbitrage bounds on the price $C(t, T, S, K)$ of a Call option with maturity T and strike K evaluated at time t when the stock price is S :

$$
\left(S-K e^{-r(T-t)}\right)_{+} \leqslant C(t, T, S, K) \leqslant S
$$

2. (3 pts) Suppose that we observe on the market several Call prices $C(T, K)$ for different strikes K and maturities T.
(a) What is the definition of the implied volatility $\tilde{I}(T, K)$ for the characteristics (T, K) ?
(b) Under which assumption on $C(T, K)$ is it well defined?
(c) Can you provide a simple numerical method to compute it?
3. ($1 \mathrm{pt)}$ What is definition of the skew phenomenon?
4. (1 pt) What is definition of the smile phenomenon?

Exercice 2 (15 pts)

Part 1: Static hedge of European options (8.5 pts)

We consider a stock which price at time t is given S_{t} taking values in \mathbb{R}_{+}. We assume that the process $\left(S_{t}\right)_{t \geqslant 0}$ admits a positive transition density given by $p(t, x, T, y)$, namely, one has

$$
\mathbb{E}\left[h\left(S_{T}\right) \mid S_{t}=x\right]=\int_{\mathbb{R}_{+}} h(y) p(t, x, T, y) d y, \quad 0 \leqslant t \leqslant T
$$

for any measurable map $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ with at most linear growth. We denote by $C(t, T, S, K)$ and $P(t, T, S, K)$ the prices of a Call and Put option evaluated at time t when the stock price is given by S with maturity T and strike K. We will denote by r the interest rate which is assumed to be constant. We also introduce the forward price of the stock at time t defined by

$$
\begin{equation*}
F_{t}=S_{t} \exp (r(T-t)) \tag{0.1}
\end{equation*}
$$

1. (1.5 pts) Recall the Call-Put parity relation linking $C\left(t, T, S_{t}, K\right)$ and $P\left(t, T, S_{t}, K\right)$. Its proof is not required. Deduce that

$$
\partial_{K} P(t, T, S, K)-\partial_{K} C(t, T, S, K)=-\exp (-r(T-t))
$$

2. (1 pt) For which specific value of K do we have that $C\left(t, T, S_{t}, K\right)-P\left(t, T, S_{t}, K\right)=0$?
3. (2 pts) Prove the two following identities

$$
p(t, S, T, K)=\exp (r(T-t)) \frac{\partial^{2}}{\partial K^{2}} C(t, T, S, K)=\exp (r(T-t)) \frac{\partial^{2}}{\partial K^{2}} P(t, T, S, K)
$$

4. (1 pt) Prove the following relation: for any $F \geqslant 0$

$$
e^{-r(T-t)} \mathbb{E}\left[h\left(S_{T}\right) \mid S_{t}=s\right]=\int_{0}^{F} h(K) \frac{\partial^{2}}{\partial K^{2}} P(t, T, S, K) d K+\int_{F}^{\infty} h(K) \frac{\partial^{2}}{\partial K^{2}} C(t, T, S, K) d K .
$$

5. (2 pts) Deduce from the results of questions 1,2 and 4 that

$$
\begin{align*}
e^{-r(T-t)} \mathbb{E}\left[h\left(S_{T}\right) \mid S_{t}\right]= & e^{-r(T-t)} h\left(F_{t}\right)+\int_{0}^{F_{t}} h^{\prime \prime}(K) P\left(t, T, S_{t}, K\right) d K \\
& +\int_{F_{t}}^{\infty} h^{\prime \prime}(K) C\left(t, T, S_{t}, K\right) d K \tag{0.2}
\end{align*}
$$

recalling that F_{t} is given by 0.1).
6. ($1 \mathrm{pt)}$ What is the financial interpretation of the previous identity?

Part 2: Example: amortizing options (4.5 pts)

A common variation on the payoff of the standard European Call option which is particularly attractive in high volatility periods of the stock price is given by the amortizing Call option with strike L with payoff

$$
\begin{equation*}
h\left(S_{T}\right)=\frac{\left(S_{T}-L\right)_{+}}{S_{T}} \tag{0.3}
\end{equation*}
$$

The aim of this section is to establish the corresponding identity 0.2 for this particular class of options. Since the function $x \mapsto x_{+}$is not twice continuously differentiable in the classical sense, it is clear that (0.3) is not $\mathcal{C}^{2}\left(\mathbb{R}_{+} \backslash\{0\}\right)$ so that we cannot apply directly (0.2). We thus proceed by an approximation argument. We let

$$
f_{\varepsilon}(x)=\frac{\left(x+\frac{\varepsilon}{2}\right)^{2}}{2 \varepsilon} \mathbf{1}_{x \in\left[-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right]}+x \mathbf{1}_{x>\frac{\varepsilon}{2}}, \quad \varepsilon>0
$$

1. (1.5 pts) Prove that $f_{\varepsilon} \rightarrow x_{+}$for any $x \in \mathbb{R}_{+}$and compute f_{ε}^{\prime} and $f_{\varepsilon}^{\prime \prime}$ for any $\varepsilon>0$.
2. Using the previous approximation of the positive part, we let

$$
h_{\varepsilon}(s)=\frac{f_{\varepsilon}(s-L)}{s}
$$

In order to simplify, we assume that $L>F_{t}$.
(a) (2 pts) Prove that

$$
\lim _{\varepsilon \downarrow 0} \int_{0}^{F_{t}} h_{\varepsilon}^{\prime \prime}(K) P\left(t, T, S_{t}, K\right) d K=0
$$

(b) (2 pts) By applying (0.2) to h_{ε} instead of h and passing to the limit as $\varepsilon \downarrow 0$, prove that

$$
e^{-r(T-t)} \mathbb{E}\left[h\left(S_{T}\right) \mid S_{t}\right]=e^{-r(T-t)} \frac{C\left(t, T, S_{t}, L\right)}{L}-2 L \int_{L}^{\infty} \frac{C\left(t, T, S_{t}, K\right)}{K^{3}} d K
$$

3. (1 pt) What is the financial interpretation of the previous identity?
