Présentation générale du cours
Dans ce cours, nous commençons par étudier les modèles de régressions linéaires à k facteurs. Les applications sont faites sous SAS et surtout sous SAS/IML (IML et IML Studio). L’accent est principalement mis sur les limitations des estimateurs MCO (autocorrélations, hétéroscédasticités, valeurs extrêmes), sur la prise en compte des propriétés statistiques des séries en particulier la faible, sur la pré et post validation des modèles, ainsi que sur les méthodes autorisant des estimations plus robustes. Une partie des résultats obtenus sont basés sur des simulations de Monte Carlo et sur du bootstrap qui nous permettra de reconstruire certaines distribution (usuelles ou pas). Une attention particulière est donnée à l’approche graphique. Dans ce cours seront utilisées à la fois des données observées et des données simulées en utilisant des DGP (Data Generating Process). Seront aussi étudiés les modèles avec changements structurels et modèles co-intégrés. Le cours du S1 se termine avec une introduction au machine learning (FS, LARS, LASSO, Elasticnet,...). Dans une seconde partie du cours (S2), la problématique est centrée sur les séries temporelles, déjà abordée au S1. On modélisera des processus dépendants au premier et second ordre. Dans un premier temps, nous reviendrons sur la stationnarité et introduirons les processus ARIMA. Ensuite, nous nous focaliserons sur les modèles ARCH / GARCH, Dans un troisième temps, seront exposés les modèles de séries temporelles structurels à composantes inobservables. Enfin, une introduction à l'analyse multivariée sera faite.
Ouvrages de référence :
1 – Econometric Methods, J. Johnston et J. DiNardo, McGraw-Hill. Très conseillé, excellent ouvrage, très synthétique d'économétrie
2 – Méthodes Statistiques, P. Tassi, Economica. Pour tous les rappels de statistiques de L3
3 – Probability and Statistical Inference, Econometric Modelling with Observational data, A. Spanos, Cambridge University Press. Très conseillé, excellent ouvrage, plutôt tourné statistique (plutôt à emprunter à la bibliothèque)
Plan (très) indicatif du cours :
S1 :
Séances 1 & 2 : Apprentissage de SAS/IML : commandes matricielles de bases et avancées. Introduction d’outils statistiques : eg estimateurs non-paramétriques d’une densité, tests de normalité, QQ plots….. Analyse des propriétés statistiques d’un processus stochastique : notions d’indépendance au premier et second ordre, notion et tests de stationnarité. Analyse de la dépendance entre deux processus stochastiques.
Séance 2/3 : Introduction à l’optimisation : Algorithme de Newton-Raphson, Descente de gradients.
Séance 3 : Simulations de Monte-Carlo et introduction au bootstrap. Applications : Analyse de la densité de l’opérateur corrélation entre deux variables stationnaires, non stationnaires
Séance 4 : Mesures d’influence, points aberrants, colinéarité, mauvaise spécification. Détection à partir d’une approche graphique. Introduction d’indicateurs de tests de spécifications.
Séance 5 & 6 : Codage sous IML d’un modèle de régression linéaire. Codage de tests de post-validation : Normalité, autocorrélation (Qstat, tests de Runs), hétéroscédascité.
Séance 7 : Hétéroscédasticité et autocorrélation, MCG et procédures de tests. Matrices HC, HAC
Séance 8 : Stationnarité locale. Détection de breaks structurels sur les premiers et seconds moments. Algorithme ICSS, Andrews et Ploberger. Codage sous SAS/IML, utilisation d’une procédure bootstrap (fixed-regressor bootstrap de Hansen) pour déduire les valeurs critiques.
Séance 9 : Introduction aux modèles dynamiques : intégration / co-intégration, modèles à correction d’erreurs.
Séance 10 : Modèles de prévisions. Simulations statiques, dynamiques, in-sample, out-sample. Validation d’une prévision par le coefficient de Theil
Séance 11 : Suivi mémoire
Séance 12 : Suivi mémoire
S2 :
Séances 1 & 2 : Modélisation ARIMA. Identification, estimation, estimation d'un modèle parcimonieux. Importance des modélisations IMA pures. Applications : extraction d'un modèle cycle-tendance. Codage d'un processus ARMA sous IML. Simulations de Monte Carlo pour estimer biais et variance du processus.
Séances 2 & 3 : Dépendance au second ordre. Hétéroscédasticité, modélisation ARCH / GARCH
Séances 4 : Modélisation d'un processus GARCH via IML. Routines d'optimisation sous SAS (Quasi Newton-Raphson). Optimisation sous contraintes linéaires
Séances 5 & 6 : Introduction aux modèles à variables d'état. Ré écriture d'un modèle de séries temporelles. Estimation via le filtre de Kalman.
Séance 7 & 8 : Modèles de séries temporelles structurelles, décomposition cycle-tendance stochastique-saisonnalité. Prévisions, extrapolation de valeurs manquantes. Modélisation de séries non économiques
Séances 9 & 10 : Modélisation multivariée (VAR). Analyses de la non-causalité à la Granger. Présentation d'une modélisation en réseau. Fonctions de réponses
Séances 11 & 12 : Suivi mémoire.
*
* *
- Enseignant éditeur: de Peretti Philippe